若關(guān)于的不等式僅有負(fù)數(shù)解,則實(shí)數(shù)的取值范圍是_________

 

【答案】

【解析】略

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若對(duì)任意x∈A,y∈B,(A⊆R,B⊆R)有唯一確定的f(x,y)與之對(duì)應(yīng),則稱f(x,y)為關(guān)于x、y的二元函數(shù).現(xiàn)定義滿足下列性質(zhì)的二元函數(shù)f(x,y)為關(guān)于實(shí)數(shù)x、y的廣義“距離”;
(1)非負(fù)性:f(x,y)≥0,當(dāng)且僅當(dāng)x=y時(shí)取等號(hào);
(2)對(duì)稱性:f(x,y)=f(y,x);
(3)三角形不等式:f(x,y)≤f(x,z)+f(z,y)對(duì)任意的實(shí)數(shù)z均成立.
今給出三個(gè)二元函數(shù),請(qǐng)選出所有能夠成為關(guān)于x、y的廣義“距離”的序號(hào):
①f(x,y)=|x-y|;②f(x,y)=(x-y)2;③f(x,y)=
x-y

能夠成為關(guān)于的x、y的廣義“距離”的函數(shù)的序號(hào)是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若對(duì)任意x∈A,y∈B,(A、B⊆R)有唯一確定的f(x,y)與之對(duì)應(yīng),稱f(x,y)為關(guān)于x、y的二元函數(shù).現(xiàn)定義滿足下列性質(zhì)的二元函數(shù)f(x,y)為關(guān)于實(shí)數(shù)x、y的廣義“距離”:
(1)非負(fù)性:f(x,y)≥0,當(dāng)且僅當(dāng)x=y=0時(shí)取等號(hào);
(2)對(duì)稱性:f(x,y)=f(y,x);
(3)三角形不等式:f(x,y)≤f(x,z)+f(z,y)對(duì)任意的實(shí)數(shù)z均成立.
今給出四個(gè)二元函數(shù):
①f(x,y)=x2+y2;②f(x,y)=(x-y)2f(x,y)=
x-y
;④f(x,y)=sin(x-y).
能夠成為關(guān)于的x、y的廣義“距離”的函數(shù)的所有序號(hào)是

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若對(duì)任意x∈A,y∈B,(A、B?R)有唯一確定的f(x,y)與之對(duì)應(yīng),稱f(x,y)為關(guān)于x、y的二元函數(shù).現(xiàn)定義滿足下列性質(zhì)的二元函數(shù)f(x,y)為關(guān)于實(shí)數(shù)x、y的廣義“距離”:
(1)非負(fù)性:f(x,y)≥0,當(dāng)且僅當(dāng)x=y=0時(shí)取等號(hào);
(2)對(duì)稱性:f(x,y)=f(y,x);
(3)三角形不等式:f(x,y)≤f(x,z)+f(z,y)對(duì)任意的實(shí)數(shù)z均成立.
今給出四個(gè)二元函數(shù):①f(x,y)=x2+y2;②f(x,y)=(x-y)2;③f(x,y)=
x-y
;④f(x,y)=sin(x-y).
能夠成為關(guān)于的x、y的廣義“距離”的函數(shù)的所有序號(hào)是( 。
A、①B、②C、③D、④

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2013-2014學(xué)年山東省青島市高三上學(xué)期期中考試文科數(shù)學(xué)試卷(解析版) 題型:填空題

若對(duì)任意,(、)有唯一確定的與之對(duì)應(yīng),稱為關(guān)于、的二元函數(shù).現(xiàn)定義滿足下列性質(zhì)的二元函數(shù)為關(guān)于實(shí)數(shù)、的廣義“距離”:

(1)非負(fù)性:,當(dāng)且僅當(dāng)時(shí)取等號(hào);

(2)對(duì)稱性:;

(3)三角形不等式:對(duì)任意的實(shí)數(shù)z均成立.

今給出四個(gè)二元函數(shù):

;②;④.

能夠成為關(guān)于的的廣義“距離”的函數(shù)的所有序號(hào)是                 .

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2013-2014學(xué)年四川成都外國(guó)語(yǔ)學(xué)校高三12月月考理科數(shù)學(xué)試卷(解析版) 題型:填空題

若對(duì)任意,,(、)有唯一確定的與之對(duì)應(yīng),稱為關(guān)于、的二元函數(shù). 現(xiàn)定義滿足下列性質(zhì)的二元函數(shù)為關(guān)于實(shí)數(shù)的廣義“距離”:

(1)非負(fù)性:,當(dāng)且僅當(dāng)時(shí)取等號(hào);

(2)對(duì)稱性:;

(3)三角形不等式:對(duì)任意的實(shí)數(shù)z均成立.

今給出個(gè)二元函數(shù):①;②;③;④.則能夠成為關(guān)于的、的廣義“距離”的函數(shù)的所有序號(hào)是           .

 

查看答案和解析>>

同步練習(xí)冊(cè)答案