中心在原點(diǎn)、焦點(diǎn)在x軸上的雙曲線的一條漸近線方程為y=
1
2
x
,則它的離心率為
5
2
5
2
分析:由題意設(shè)出雙曲線的方程,得到它的一條漸近線方程y=
b
a
x即y=
1
2
x,由此可得b:a=1:2,結(jié)合雙曲線的平方關(guān)系可得c與a的比值,求出該雙曲線的離心率.
解答:解:∵雙曲線的中心在原點(diǎn),焦點(diǎn)在x軸上,
∴設(shè)雙曲線的方程為
x2
a2
-
y2
b2
=1(a>0,b>0)
,
由此可得雙曲線的漸近線方程為y=±
b
a
x,結(jié)合題意一條漸近線方程為y=
1
2
x,
b
a
=
1
2
,設(shè)a=2t,b=t,則c=
a2+b2
=
5
t(t>0)
∴該雙曲線的離心率是e=
c
a
=
5
2

故答案為:
5
2
點(diǎn)評:本題給出雙曲線的一條漸近線方程,求雙曲線的離心率,著重考查了雙曲線的標(biāo)準(zhǔn)方程、基本概念和簡單幾何性質(zhì)等知識,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓w的中心在原點(diǎn),焦點(diǎn)在x軸上,長軸長為4,離心率為
6
3
,△ABC的頂點(diǎn)A,B在橢圓w上,C在直線l:y=x+2上,且AB∥l.
(1)求橢圓w的方程;
(2)當(dāng)AB邊通過坐標(biāo)原點(diǎn)O時(shí),求AB的長及△ABC的面積;
(3)當(dāng)∠ABC=90°,且斜邊AC的長最大時(shí),求AB所在直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,函數(shù)y=f(x)的圖象是中心在原點(diǎn)、焦點(diǎn)在x軸上的橢圓的兩段弧,則不等式f(x)<f(-x)+x的解集為( 。
A、{x|-
2
<x<0或
2
<x≤2}
B、{x|-2≤x<-
2
2
<x≤2}
C、{x|-2≤x<-
2
2
2
2
<x≤2}
D、{x|-
2
<x<
2
,且x≠0}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,函數(shù)y=f(x)的圖象是中心在原點(diǎn),焦點(diǎn)在x軸上的橢圓的兩段弧,則不等式f(x)<f(-x)+x的解集為(  )
A、{
2
2
<x≤2
2
2
<x≤2
}
B、{x|-2≤x<
2
2
<x≤2}
C、{x|-
2
<x<0
2
<x≤2
}
D、{x|-
2
<x<
2
,且x≠0}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010-2011年山西省孝義市高二第二次月考考試數(shù)學(xué)文卷 題型:解答題

(12分)

    已知橢圓中心在原點(diǎn),焦點(diǎn)在x軸上,長軸長等于12,離心率為.

(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;

(Ⅱ)過橢圓左頂點(diǎn)作直線l垂直于x軸,若動(dòng)點(diǎn)M到橢圓右焦點(diǎn)的距離比它到直線l的距離小4,求點(diǎn)M的軌跡方程.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:東城區(qū)模擬 題型:解答題

已知橢圓w的中心在原點(diǎn),焦點(diǎn)在x軸上,長軸長為4,離心率為
6
3
,△ABC的頂點(diǎn)A,B在橢圓w上,C在直線l:y=x+2上,且ABl.
(1)求橢圓w的方程;
(2)當(dāng)AB邊通過坐標(biāo)原點(diǎn)O時(shí),求AB的長及△ABC的面積;
(3)當(dāng)∠ABC=90°,且斜邊AC的長最大時(shí),求AB所在直線的方程.

查看答案和解析>>

同步練習(xí)冊答案