已知f(x)=ax2+bx+c的圖象過點(diǎn)(-1,0)是否存在常數(shù)a,b,c,使得不等式x≤f(x)≤
1+x2
2
對(duì)一切實(shí)數(shù)x都成立,若存在,求出a,b,c;若不存在,說明理由.
考點(diǎn):二次函數(shù)的性質(zhì)
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:通過圖象過一點(diǎn)得到a、b、c一關(guān)系式,觀察發(fā)現(xiàn)1≤f(1)≤1,又可的一關(guān)系式,再將b、c都有a表示.不等式x≤f(x)≤
1+x2
2
對(duì)一切實(shí)數(shù)x都成立可轉(zhuǎn)化成兩個(gè)一元二次不等式恒成立,即可解得.
解答: 解:∵f(x)的圖象過點(diǎn)(-1,0),∴a-b+c=0①
∵x≤f(x)≤
1+x2
2
對(duì)一切x∈R均成立,
∴當(dāng)x=1時(shí)也成立,即1≤a+b+c≤1.
故有a+b+c=1.②
由①②得b=
1
2
,c=
1
2
-a.
∴f(x)=ax2+
1
2
x+
1
2
-a.
故x≤ax2+
1
2
x+
1
2
-a≤
1+x2
2
對(duì)一切x∈R成立,
也即
ax2-
1
2
x+
1
2
-a≥0
(1-2a)x2-x+2a≥0
恒成立,
1
4
-4a(
1
2
-a)≤0
1-8a(1-2a)≤0
a>0
1-2a>0
,
解得a=
1
4

∴c=
1
2
-a=
1
4

∴常數(shù)a,b,c的值為:a=
1
4
,b=
1
2
,c=
1
4
點(diǎn)評(píng):本題考查了函數(shù)恒成立問題,以及二次函數(shù)的性質(zhì),賦值法(特殊值法)可以使問題變得比較明朗,它是解決這類問題比較常用的方法.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知圓錐的表面積為am2,且它的側(cè)面展開圖是一個(gè)半圓,求這個(gè)圓錐的底面直徑.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)(5x-
x
n的展開式的各項(xiàng)系數(shù)之和為M,二項(xiàng)式系數(shù)之和為N,M-N=240,求展開式中x3項(xiàng)的系數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

為了解某班關(guān)注NBA(美國(guó)職業(yè)籃球)是否與性別有關(guān),對(duì)某班48人進(jìn)行了問卷調(diào)查得到如下的列聯(lián)表:
關(guān)注NBA 不關(guān)注NBA 合計(jì)
男生 6
女生 10
合計(jì) 48
已知在全班48人中隨機(jī)抽取1人,抽到關(guān)注NBA的學(xué)生的概率為
2
3

(1)請(qǐng)將上面的表補(bǔ)充完整(不用寫計(jì)算過程),并判斷是否有95%的把握認(rèn)為關(guān)注NBA與性別有關(guān)?說明你的理由;
(2)設(shè)甲,乙是不關(guān)注NBA的6名男生中的兩人,丙,丁,戊是關(guān)注NBA的10名女生中的3人,從這5人中選取2人進(jìn)行調(diào)查,求:甲,乙至少有一人被選中的概率.
答題參考:
P(K2≥k) 0.10 0.05 0.010 0.005
k0 2.706 3.841 6.635 7.879
K2=
n(ad-bc)2
(a+b)(c+d)(a+c)(b+d)
,n=a+b+c+d.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,已知PA⊥矩形ABCD所在的平面,M、N分別為AB、PC的中點(diǎn),∠PDA=45°,AB=2,AD=1
(1)求證:MN∥平面PAD; 
(2)求證:平面PMC⊥平面PCD;
(3)求MN與BC所成角的大?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

證明:1+
1
3
+
1
5
+…+
1
2n-1
2n-1
(n∈N*).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,已知點(diǎn)M、N是正方體ABCD-A1B1C1D1的兩棱A1A與A1B1的中點(diǎn),P是正方形ABCD的中心,
(1)求證:MN∥平面PB1C.
(2)求證:D1B⊥平面PB1C.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在如圖所示的幾何體中,四邊形ABCD為正方形,△ABE為等腰直角三角形,∠BAE=90°,且AD⊥AE.
(Ⅰ)證明:平面AEC⊥平面BED.
(Ⅱ)求直線EC與平面BED所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知下列命題:
①函數(shù)y=sin(-2x+
π
3
)的單調(diào)增區(qū)間是[-kπ-
π
12
,-kπ+
12
](k∈Z).
②要得到函數(shù)y=cos(x-
π
6
)的圖象,需把函數(shù)y=sinx的圖象上所有點(diǎn)向左平行移動(dòng)
π
3
個(gè)單位長(zhǎng)度.
③已知函數(shù)f(x)=2cos2x-2acosx+3,當(dāng)a≤-2時(shí),函數(shù)f(x)的最小值為g(a)=5+2a.
④已知角A、B、C是銳角△ABC的三個(gè)內(nèi)角,則點(diǎn)P(sinA-cosB,cosA-sinC)在第四象限.
其中正確命題的序號(hào)是
 

查看答案和解析>>

同步練習(xí)冊(cè)答案