已知遞增的等比數(shù)列{an}的前n項(xiàng)和為Sn,a5=32,a3、a4的等差中項(xiàng)為3a2
(1)求an的通項(xiàng)公式;
(2)設(shè)bn=
n
a2n-1
,求數(shù)列bn的前n項(xiàng)和Tn
考點(diǎn):數(shù)列的求和,等比數(shù)列的通項(xiàng)公式
專題:等差數(shù)列與等比數(shù)列
分析:(1)根據(jù)等比數(shù)列的通項(xiàng)公式、等差中項(xiàng)的性質(zhì),列出關(guān)于a1、q的方程,求出a1、q的值,代入an化簡(jiǎn);
(2)由(1)和題意化簡(jiǎn)bn,再利用錯(cuò)位相減法求出數(shù)列bn的前n項(xiàng)和Tn
解答: 解:(1)設(shè)遞增等比數(shù)列{an}首項(xiàng)、公比為a1、q,且q>0,
因?yàn)閍5=32,a3、a4的等差中項(xiàng)為3a2,
所以
a1q4=32
6a1q=a1q2+a1q3
,解得a1=2、q=2,
則an=2•2n-1=2n;
(2)由(1)得,bn=
n
a2n-1
=
n
22n-1

所以Tn=
1
21
+
2
23
+
3
25
+…+
n
22n-1
,①
1
4
Tn=
1
23
+
2
25
+
3
27
+…+
n
22n+1
,②
①-②得
3
4
Tn=
1
21
+
1
23
+
1
25
+…+
1
22n-1
-
n
22n+1

=
1
2
(1-
1
4n
)
1-
1
4
-
n
22n+1
=
2
3
-(
2
3
+
n
2
)•
1
22n

則Tn=
8
9
-
3n+4
9
1
22n-1
點(diǎn)評(píng):本題考查等比數(shù)列的通項(xiàng)公式、前n項(xiàng)和公式,錯(cuò)位相減法求數(shù)列的前n項(xiàng)和,以及方程思想,考查化簡(jiǎn)能力.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知曲線C的方程為(2-t)x2+(3-t)y2=(2-t)(3-t),t<3.
(1)就t的不同取值討論方程所表示的曲線C的形狀;
(2)若t=-1,過(guò)點(diǎn)P(4,0)且不垂直于x軸的直線l與曲線C相交于A,B兩點(diǎn).
①求
OA
OB
的取值范圍;
②若B點(diǎn)關(guān)于x軸的對(duì)稱點(diǎn)為E點(diǎn),探索直線AE與x軸的相交點(diǎn)是否為定點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知tanα=2,求:
(Ⅰ)
2sinα+cosα
sinα-cosα
;
(Ⅱ)2sinαcosα+cos2α+1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知sinα=
4
5
,α∈(
π
2
,π).
(1)求cosα,tanα的值;
(2)求cos2α的值;
(3)求sin(α+
π
6
)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

某校數(shù)學(xué)課外興趣小組為研究數(shù)學(xué)成績(jī)是否與性別有關(guān),先統(tǒng)計(jì)本校高三年級(jí)每一個(gè)學(xué)生一學(xué)期數(shù)學(xué)成績(jī)的平均分(采用百分制),剔除平均分在30分以下的學(xué)生后,共有男生300名,女生200名,現(xiàn)采用分層抽樣的方法,從中抽取了100名學(xué)生,按性別分為兩組,并將兩組學(xué)生成績(jī)分為6組,得到如下所示頻數(shù)分布表.
分?jǐn)?shù)段[40,50)[50,60)[60,70)[70,80)[80,90)[90,100]
39181569
64510132
(1)估計(jì)男女生各自的成績(jī)平均數(shù)(同一組數(shù)據(jù)用該區(qū)間中點(diǎn)值作代表),從計(jì)算結(jié)果看,判斷數(shù)學(xué)成績(jī)與性別是否有關(guān).
(2)規(guī)定80分以上為優(yōu)分(含80分),請(qǐng)你根據(jù)已知條件作出2×2列聯(lián)表,并判斷是否有90%以上的把握認(rèn)為“數(shù)學(xué)成績(jī)與性別有關(guān)”.
優(yōu)分非優(yōu)分合計(jì)
男生   
女生   
合計(jì)  100
附表及公式
P(k2≥k)0.1000.0500.0100.001
k2.7063.8416.63510.828
K2=
n(ad-bc)2
(a+b)(c+d)(a+c)(b+d)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

2
-1)-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

a
=(2,-3,5),
b
=(-3,1,-4),求
a
+
b
,6
a
a
b
,|
a
-2
b
|.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,塔AB底部為點(diǎn)B,若C,D兩點(diǎn)相距為100m并且與點(diǎn)B在同一水平線上,現(xiàn)從C,D兩點(diǎn)測(cè)得塔頂A的仰角分別為45°和30°,則塔AB的高約為(精確到0.1m,
3
≈1.73,
2
≈1.41)(  )
A、36.5B、115.6
C、120.5D、136.5

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

給定兩個(gè)命題p,q,若¬p是q的必要而不充分條件,則p是¬q的( 。
A、必要而不充分條件
B、充分而不必要條件
C、充要條件
D、既不充分也不必要條件

查看答案和解析>>

同步練習(xí)冊(cè)答案