【題目】在空間中,過點A作平面π的垂線,垂足為B,記B=fπ(A).設α,β是兩個不同的平面,對空間任意一點P,Q1=fβ[fα(P)],Q2=fα[fβ(P)],恒有PQ1=PQ2 , 則(
A.平面α與平面β垂直
B.平面α與平面β所成的(銳)二面角為45°
C.平面α與平面β平行
D.平面α與平面β所成的(銳)二面角為60°

【答案】A
【解析】解:設P1=fα(P),則根據(jù)題意,得點P1是過點P作平面α垂線的垂足
∵Q1=fβ[fα(P)]=fβ(P1),
∴點Q1是過點P1作平面β垂線的垂足
同理,若P2=fβ(P),得點P2是過點P作平面β垂線的垂足
因此Q2=fα[fβ(P)]表示點Q2是過點P2作平面α垂線的垂足
∵對任意的點P,恒有PQ1=PQ2 ,
∴點Q1與Q2重合于同一點
由此可得,四邊形PP1Q1P2為矩形,且∠P1Q1P2是二面角α﹣l﹣β的平面角
∵∠P1Q1P2是直角,∴平面α與平面β垂直
故選:A

【考點精析】掌握空間中直線與平面之間的位置關系和平面與平面之間的位置關系是解答本題的根本,需要知道直線在平面內—有無數(shù)個公共點;直線與平面相交—有且只有一個公共點;直線在平面平行—沒有公共點;兩個平面平行沒有交點;兩個平面相交有一條公共直線.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知圓C的圓心在x軸正半軸上,半徑為5,且與直線相切.

(1)求圓C的方程;

(2)設點,過點作直線與圓C交于兩點,若,求直線的方程;

(3)設P是直線上的點,過P點作圓C的切線,切點為求證:經(jīng)過 三點的圓必過定點,并求出所有定點的坐標.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某單位招聘員工,有名應聘者參加筆試,隨機抽查了其中名應聘者筆試試卷,統(tǒng)計他們的成績如下表:

分數(shù)段

人數(shù)

1

3

6

6

2

1

1

若按筆試成績擇優(yōu)錄取名參加面試,由此可預測參加面試的分數(shù)線為( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如果某地的財政收入與支出滿足線性回歸方程(單位:億元),其中,如果今年該地區(qū)財政收入10億元,則年支出預計不會超過( )

A. 10.5億 B. 10億 C. 9.5億 D. 9億

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知e為自然對數(shù)的底數(shù),設函數(shù)f(x)=(ex﹣1)(x﹣1)k(k=1,2),則(
A.當k=1時,f(x)在x=1處取得極小值
B.當k=1時,f(x)在x=1處取得極大值
C.當k=2時,f(x)在x=1處取得極小值
D.當k=2時,f(x)在x=1處取得極大值

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】為了調查觀眾對電視劇《風箏》的喜愛程度,某電視臺舉辦了一次現(xiàn)場調查活動.在參加此活動的甲、乙兩地大量觀眾中,各隨機抽取了8名觀眾對該電視劇評分做調查(滿分100分),被抽取的觀眾的評分結果如圖所示.

(1)從甲地抽取的8名觀眾和乙地抽取的8名觀眾中分別各選取一人,在已知兩人中至少一人評分不低于90分的條件下,求乙地被選取的觀眾評分低于90分的概率。

(2)從甲地抽取出來的8名觀眾中選取1人,從乙地抽取出來的8名觀眾中選取2人去參加代表大會,記選取的3人中評分不低于90分的人數(shù)為,求的分布列與期望。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】(本小題滿分16分)已知是虛數(shù), 是實數(shù).

(1)求為何值時, 有最小值,并求出|的最小值;

(2)設,求證: 為純虛數(shù).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】.

(1)的單調區(qū)間;

(2)求的最大值與最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在三棱柱ABC﹣A1B1C1中,側棱AA1⊥底面ABC,AB=AC=2AA1 , ∠BAC=120°,D,D1分別是線段BC,B1C1的中點,P是線段AD的中點.

(1)在平面ABC內,試做出過點P與平面A1BC平行的直線l,說明理由,并證明直線l⊥平面ADD1A1;
(2)設(1)中的直線l交AB于點M,交AC于點N,求二面角A﹣A1M﹣N的余弦值.

查看答案和解析>>

同步練習冊答案