(2012•杭州二模)已知橢圓
x2
a2
+
y2
b2
=1 (a  b  0)
上任一點(diǎn)P到兩個(gè)焦點(diǎn)的距離的和為2
3
,P與橢圓長軸兩頂點(diǎn)連線的斜率之積為-
2
3
.設(shè)直線l過橢圓C的右焦點(diǎn)F,交橢圓C于兩點(diǎn)A(x1,y1),B(x2,y2).
(Ⅰ)若
OA
OB
=
4
tan∠AOB
(O為坐標(biāo)原點(diǎn)),求|y1-y2|的值;
(Ⅱ)當(dāng)直線l與兩坐標(biāo)軸都不垂直時(shí),在x軸上是否總存在點(diǎn)Q,使得直線QA、QB的傾斜   角互為補(bǔ)角?若存在,求出點(diǎn)Q的坐標(biāo);若不存在,請說明理由.
分析:(I)由橢圓的定義可知:a=
3
;由P與橢圓長軸兩頂點(diǎn)連線的斜率之積為-
2
3
,可得-
b2
a2
=-
2
3
,即可得到a,b2
(II)假設(shè)存在一點(diǎn)Q(m,0),使得直線QA、QB的傾斜角互為補(bǔ)角,設(shè)直線l的方程為y=k(x-1)代入橢圓的方程消去y得(3k2+2)x2-6k2x+3k2-6=0,得到根與系數(shù)的關(guān)系;由直線QA、QB的傾斜角互為補(bǔ)角,可得kQA+kQB=0,利用斜率計(jì)算公式得出,把根與系數(shù)的關(guān)系代入解出即可.
解答:解:(Ⅰ)由橢圓的定義知a=
3
,又-
b2
a2
=-
2
3
,∴b2=2,c2=a2-b2=1.
∴橢圓P(x0,y0)的方程是
x2
3
+
y2
2
=1

OA
OB
=
4
tan∠AOB
,∴|
OA
|•|
OB
|cos∠AOB=
4
tan∠AOB
,
|
OA
|•|
OB
|sin∠AOB=4
,
S△AOB=
1
2
|
OA
|•|
OB
|sin∠AOB=2
,
S△AOB=
1
2
|y1-y2|×1
,故|y1-y2|=4.
(Ⅱ)假設(shè)存在一點(diǎn)Q(m,0),使得直線QA、QB的傾斜角互為補(bǔ)角,
依題意可知直線l、QA、QB斜率存在且不為零.
設(shè)直線l的方程為y=k(x-1)代入橢圓的方程消去y得(3k2+2)x2-6k2x+3k2-6=0,
設(shè)A(x1,y1),B(x2,y2)則x1+x2=
6k2
3k2+2
,x1x2=
3k2-6
3k2+2

∵直線QA、QB的傾斜角互為補(bǔ)角,
∴kQA+kQB=0,∴
y1
x1-m
+
y2
x2-m
=0

又y1=k(x1-1),y2=k(x2-1),
代入上式可得2x1x2+2m-(m+1)(x1+x2)=0,
3k2-6
3k2+2
+2m-(m+1)×
6k2
3k2+2
=0
,
化為2m-6=0,解得m=3,
∴存在Q(3,0)使得直線QA、QB的傾斜角互為補(bǔ)角.
點(diǎn)評:熟練掌握橢圓的定義、橢圓上一點(diǎn)P與橢圓長軸兩頂點(diǎn)連線的斜率之積為-
b2
a2
、直線QA、QB的傾斜角互為補(bǔ)角?kQA+kQB=0、直線與橢圓的方程相交問題轉(zhuǎn)化為一元二次方程的根與系數(shù)的關(guān)系、斜率計(jì)算公式等是解題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2012•杭州二模)如圖,在矩形ABCD中,AB=2BC,點(diǎn)M在邊DC上,點(diǎn)F在邊AB上,且DF⊥AM,垂足為E,若將△ADM沿AM折起,使點(diǎn)D位于D′位置,連接D′B,D′C得四棱錐D′-ABCM.
(Ⅰ)求證:AM⊥D′F;
(Ⅱ)若∠D′EF=
π
3
,直線D'F與平面ABCM所成角的大小為
π
3
,求直線AD′與平面ABCM所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•杭州二模)設(shè)定義域?yàn)椋?,+∞)的單調(diào)函數(shù)f(x),對任意的x∈(0,+∞),都有f[f(x)-log2x]=6,若x0是方程f(x)-f′(x)=4的一個(gè)解,且x0∈(a,a+1)(a∈N*),則a=
1
1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•杭州二模)雙曲線
x2
a2
-
y2
b2
=1(a>0, b>0)
的左、右焦點(diǎn)分別為F1,F(xiàn)2,漸近線分別為l1,l2,點(diǎn)P在第一 象限內(nèi)且在l1上,若l2⊥PF1,l2∥PF2,則雙曲線的離心率是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•杭州二模)已知正三棱柱ABC-A′B′C′的正視圖和側(cè)視圖如圖所示.設(shè)△ABC,△A′B′C′的中心分別是O,O′,現(xiàn)將此三棱柱繞直線OO′旋轉(zhuǎn),在旋轉(zhuǎn)過程中對應(yīng)的俯視圖的面積為S,則S的最大值為
8
8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•杭州二模)若全集U={1,2,3,4,5},CUP={4,5},則集合P可以是( 。

查看答案和解析>>

同步練習(xí)冊答案