函數(shù)y=Asin(ωx+ϕ)在一個(gè)周期內(nèi)的圖象如右圖所示,此函數(shù)的解析式為( 。
A、y=2sin(x+
π
3
B、y=2sin(2x+
π
3
C、y=2sin(
x
2
-
π
3
D、y=2sin(2x-
π
3
考點(diǎn):由y=Asin(ωx+φ)的部分圖象確定其解析式
專題:三角函數(shù)的圖像與性質(zhì)
分析:由函數(shù)的圖象的頂點(diǎn)坐標(biāo)求出A,由周期求出ω,由五點(diǎn)法作圖求出φ的值,可得函數(shù)的解析式.
解答: 解:由函數(shù)的圖象可得A=2,
T
2
=
π
ω
=
6
-
π
6
,∴ω=1.
再根據(jù)五點(diǎn)法作圖可得 1×(-
π
3
)+φ=0,
∴φ=
π
3
,
∴函數(shù)的解析式為 y=2sin(x+
π
3
),
故選:A.
點(diǎn)評(píng):本題主要考查由函數(shù)y=Asin(ωx+φ)的部分圖象求解析式,由函數(shù)的圖象的頂點(diǎn)坐標(biāo)求出A,
周期求出ω,由五點(diǎn)法作圖求出φ的值,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若A,B,C為△ABC的三個(gè)內(nèi)角,則
9
A
+
1
B+C
的最小值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù) y=f(x),x∈D,若存在常數(shù)C,對(duì)任意的x1∈D,存在唯一的x2∈D使得
f(x1)f(x2)
=C
,則稱函數(shù)f(x)在D上的幾何平均數(shù)為C.已知f(x)=x3,x∈[1,2],則函數(shù)f(x)=x3在[1,2]上的幾何平均數(shù)為(  )
A、
2
B、2
C、4
D、2
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)向量
a
=(cos25°,sin25°),
b
=(sin20°,cos20°),若t是實(shí)數(shù),且
u
=
a
+t
b
,則|
u
|的最小值為(  )
A、
2
B、
2
2
C、1
D、
1
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

下列說(shuō)法:
①將一組數(shù)據(jù)中的每一個(gè)數(shù)據(jù)都加上或減去同一個(gè)常數(shù)后,方差恒不變;
②設(shè)有一個(gè)回歸方程
y
=3-5x,變量x增加一個(gè)單位時(shí),y平均增加5個(gè)單位;
③相關(guān)系數(shù)r越接近1,說(shuō)明模型的擬和效果越好;
其中錯(cuò)誤的個(gè)數(shù)是( 。
A、1B、2C、3D、0

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

下列四組函數(shù)中,表示同一函數(shù)的是( 。
A、y=
x2
與y=
3x3
B、y=1與y=x0
C、y=2x+1與y=2t+1
D、y=x與y=(
x
)2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若函數(shù)f(x)=
1+lnx
x
在區(qū)間(a,a+
2
3
) (a≥0)上有極值,則實(shí)數(shù)a的取值范圍是( 。
A、(0,1)
B、(
2
3
,1)
C、(
1
2
,1)
D、(
1
3
,1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知映射f:M→N,使集合N中的元素y=x2與集合M中的元素x對(duì)應(yīng),要使映射f:M→N是一一對(duì)應(yīng),那么M,N可以是( 。
A、M=R,N=R
B、M=R,N={y|y≥0}
C、M={x|x≥0},N=R
D、M={x|x≥0},N={y|y≥0}

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=
1
3
x3-ax+1.a(chǎn)∈R
(Ⅰ)若x=1時(shí),f(x)取得極值,求a的值;
(Ⅱ)若對(duì)任意m∈R,直線y=-x+m都不是曲線y=f(x)的切線,求a的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案