已知函數(shù).
(1)求的單調(diào)區(qū)間和極值;
(2)設(shè),,且,證明:.
(1)單調(diào)增區(qū)間是,單調(diào)減區(qū)間是;極小值,無極大值。(2)詳見解析
解析試題分析:(1)先求導(dǎo),再令導(dǎo)數(shù)大于0的函數(shù)的增區(qū)間,令導(dǎo)數(shù)小于0得函數(shù)的減區(qū)間,根據(jù)函數(shù)的單調(diào)性可得函數(shù)的極值。(2)即證,不妨設(shè),問題可轉(zhuǎn)化為,令,令,用導(dǎo)數(shù)求其最值,證其最大值小于0即可。
試題解析:(1)定義域為
令則 ∴;令則 ∴
∴的單調(diào)增區(qū)間是,單調(diào)減區(qū)間是
極小值,無極大值
(2)證明:不妨設(shè),
兩邊同除以得,
令,則,即證:
令
令,
, 在上單調(diào)遞減,所以
即,即恒成立
∴在上是減函數(shù),所以
∴得證
所以成立
考點:利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性和極值最值問題。
科目:高中數(shù)學(xué) 來源: 題型:解答題
經(jīng)銷商用一輛型卡車將某種水果運送(滿載)到相距400km的水果批發(fā)市場.據(jù)測算,型卡車滿載行駛時,每100km所消耗的燃油量(單位:)與速度(單位:km/h)的關(guān)系近似地滿足,除燃油費外,人工工資、車損等其他費用平均每小時300元.已知燃油價格為7.5元/L.
(1)設(shè)運送這車水果的費用為(元)(不計返程費用),將表示成速度的函數(shù)關(guān)系式;
(2)卡車該以怎樣的速度行駛,才能使運送這車水果的費用最少?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù).
(1)當(dāng)時,求函數(shù)的極值;
(2)若函數(shù)在區(qū)間上是減函數(shù),求實數(shù)的取值范圍;
(3)當(dāng)時,函數(shù)圖像上的點都在所表示的平面區(qū)域內(nèi),求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)f(x)=ax3+bx+c(a≠0)為奇函數(shù),其圖象在點(1,f(1))處的切線與直線x-6y-7=0垂直,導(dǎo)函數(shù)f′(x)的最小值為-12.
(1)求函數(shù)f(x)的解析式;
(2)求函數(shù)f(x)的單調(diào)增區(qū)間,并求函數(shù)f(x)在[-1,3]上的最大值和最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù),其中,是自然對數(shù)的底數(shù).
(1)求函數(shù)的零點;
(2)若對任意均有兩個極值點,一個在區(qū)間(1,4)內(nèi),另一個在區(qū)間[1,4]外,求a的取值范圍;
(3)已知,且函數(shù)在R上是單調(diào)函數(shù),探究函數(shù)的單調(diào)性.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)
(1)求曲線y=f(x)在(2,f(2))處的切線方程;
(2)若g(x)=f(x)一有兩個不同的極值點.其極小值為M,試比較2M與一3的大小,并說明理由;
(3)設(shè)q>p>2,求證:當(dāng)x∈(p,q)時,.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)函數(shù).
(Ⅰ)當(dāng)時,求曲線在處的切線方程;
(Ⅱ)當(dāng)時,求函數(shù)的單調(diào)區(qū)間;
(Ⅲ)在(Ⅱ)的條件下,設(shè)函數(shù),若對于,,使成立,求實數(shù)的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com