已知實數(shù)x、y滿足
y≥1
y≤2x-1
x+y≤4
,則目標函數(shù)z=
x+4y+5
x+1
的最大值與最小值的和是
 
考點:簡單線性規(guī)劃
專題:不等式的解法及應用
分析:作出不等式組對應的平面區(qū)域,利用目標函數(shù)的幾何意義即可得到結論.
解答: 解:z=
x+4y+5
x+1
=
x+1+4(y+1)
x+1
=1+4×
y+1
x+1
,
設k=
y+1
x+1
,則k的幾何意義是區(qū)域內的點到定點D(-1,-1)的斜率,
則z=1+4k,
作出不等式組對應的平面區(qū)域如圖:
則DB的斜率最大,DC的斜率最小,
y=1
x+y=4
,解得
x=3
y=1
,即C(3,1),此時k=
1+1
3+1
=
1
2
,
y=2x-1
x+y=4
,解得
x=
5
3
y=
7
3
,即B(
5
3
7
3
),此時k=
7
3
+1
5
3
+1
=
5
4
,
1
2
≤k≤
5
4
,
則2≤4k≤5,3≤1+4k≤6,
故3≤z≤6,
則z的最大值與最小值的和為3+6=9,
故答案為:9
點評:本題主要考查了用平面區(qū)域二元一次不等式組,以及直線斜率的計算,利用數(shù)形結合是解決本題的關鍵.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)和g(x)的圖象關于原點對稱,且f(x)=x2+2x.若函數(shù)h(x)=g(x)-λf(x)+1在[-1,1]上是增函數(shù),求實數(shù)λ的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

某單位共有老、中、青職工860人,其中青年職工320人,中年職工人數(shù)是老年職工人數(shù)的2倍.為了解職工身體狀況,現(xiàn)采用分層抽樣方法進行調查,在抽取的樣本中有青年職工64人,則該樣本中的老年職工人數(shù)為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在直角坐標系xOy中,以O為極點,x軸正半軸為極軸建立直角坐標系,圓C的極坐標方程為ρ=2
2
cos(θ+
π
4
)
,直線l的參數(shù)方程為
x=t
y=-1+2
2
t
(t為參數(shù)),直線l和圓C交于A,B兩點,P是圓C上不同于A,B的任意一點.
(Ⅰ)求圓心的極坐標;
(Ⅱ)求△PAB面積的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知M(x0,y0)是圓x2+y2=a2外任意一點,則直線x0x+y0y=a2與該圓的位置關系是( 。
A、相切
B、相交
C、相離
D、由點(x0、y0)的位置決定

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若雙曲線x2-
y2
k
=1
的一個焦點是(3,0),則實數(shù)k=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,有一塊扇形草地OMN,已知半徑為R,∠MON=
π
2
,現(xiàn)要在其中圈出一塊矩形場地ABCD作為兒童樂園使用,其中點A、B在弧MN上,且線段AB平行于線段MN
(1)若點A為弧MN的一個三等分點,求矩形ABCD的面積S;
(2)當A在何處時,矩形ABCD的面積S最大?最大值為多少?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若甲乙兩人從6門課程中各選修3門,則甲乙所選的課程中恰有2門相同的選法有
 
種.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若集合M={x||x|≤2},N={x|x2-3x≤0},則M∩N=
 

查看答案和解析>>

同步練習冊答案