【題目】如圖為半圓的直徑,點(diǎn)是半圓弧上的兩點(diǎn), , .曲線經(jīng)過點(diǎn),且曲線上任意點(diǎn)滿足: 為定值.
(Ⅰ)求曲線的方程;
(Ⅱ)設(shè)過點(diǎn)的直線與曲線交于不同的兩點(diǎn),求面積最大時的直線的方程.
【答案】(1);(2)或
【解析】試題分析:(1)先求P點(diǎn)坐標(biāo),再根據(jù)兩點(diǎn)間距離公式求,最后根據(jù)橢圓定義確定a,c,b(2)先設(shè),與橢圓方程聯(lián)立,結(jié)合韋達(dá)定理以及弦長公式求EF,根據(jù)點(diǎn)到直線距離公式求高,再根據(jù)三角形面積公式得面積關(guān)于k的函數(shù)關(guān)系式,最后根據(jù)基本不等式求最值,根據(jù)等號成立條件確定直線的方程
試題解析:(Ⅰ)根據(jù)橢圓的定義,曲線是以為焦點(diǎn)的橢圓,其中,.
,
,,曲線的方程為;
(Ⅱ)設(shè)過點(diǎn)的直線的斜率為,則.
由得,
,
,
又點(diǎn)到直線的距離, 的面積 .
令,則.
當(dāng)且僅當(dāng),即時,面積取最大值.
此時直線的方程為或.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓()的離心率為,且a2=2b.
(1)求橢圓的方程;
(2)直線l:x﹣y+m=0與橢圓交于A,B兩點(diǎn),是否存在實(shí)數(shù)m,使線段AB的中點(diǎn)在圓x2+y2=5上,若存在,求出m的值;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】—只螞蟻在三邊長分別為,,的三角形內(nèi)自由爬行,某時刻該螞蟻距離三角形的任意一個頂點(diǎn)的距離不超過的概率為( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】甲乙兩人玩猜數(shù)字游戲,先由甲心中任想一個數(shù)字記為,再由乙猜甲剛才想的數(shù)字,把乙猜的數(shù)字記為,且、.若,則稱甲乙“心有靈犀”.現(xiàn)任意找兩人玩這個游戲,則二人“心有靈犀”的概率為__________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,定義域?yàn)?/span>上的函數(shù)是由一條射線及拋物線的一部分組成.利用該圖提供的信息解決下面幾個問題.
(1)求的解析式;
(2)若關(guān)于的方程有三個不同解,求的取值范圍;
(3)若,求的取值集合.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】用,,表示空間中三條不同的直線,表示平面, 給出下列命題:
① 若,, 則∥; ② 若∥,∥, 則∥;
③ 若∥,∥, 則∥; ④ 若 , , 則∥.
其中真命題的序號是( )
A. ①② B. ②③ C. ①④ D. ②④
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某學(xué)校舉行了一次安全教育知識競賽,競賽的原始成績采用百分制.已知高三學(xué)生的原始成績均分布在內(nèi),發(fā)布成績使用等級制,各等級劃分標(biāo)準(zhǔn)見表.
原始成績 | 85分及以上 | 70分到84分 | 60分到69分 | 60分以下 |
等級 | 優(yōu)秀 | 良好 | 及格 | 不及格 |
為了解該校高三年級學(xué)生安全教育學(xué)習(xí)情況,從中抽取了名學(xué)生的原始成績作為樣本進(jìn)行統(tǒng)計,按照的分組作出頻率分布直方圖如圖所示,其中等級為不及格的有5人,優(yōu)秀的有3人.
(1)求和頻率分布直方圖中的的值;
(2)根據(jù)樣本估計總體的思想,以事件發(fā)生的頻率作為相應(yīng)事件發(fā)生的概率,若在該校高三學(xué)生中任選3人,求至少有1人成績是及格以上等級的概率;
(3)在選取的樣本中,從原始成績在80分以上的學(xué)生中隨機(jī)抽取3名學(xué)生進(jìn)行學(xué)習(xí)經(jīng)驗(yàn)介紹,記表示抽取的3名學(xué)生中優(yōu)秀等級的學(xué)生人數(shù),求隨機(jī)變量的分布列及數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,四棱錐的底面是正方形, 平面,,點(diǎn)是上的點(diǎn),且 .
(1)求證:對任意的 ,都有.
(2)設(shè)二面角C-AE-D的大小為 ,直線BE與平面所成的角為 ,
若,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知定義在R上的函數(shù)f(x)滿足:對任意都有,且當(dāng)x>0時,.
(1)求的值,并證明為奇函數(shù);
(2)判斷函數(shù)的單調(diào)性,并證明;
(3)若對任意恒成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com