【題目】已知函數(shù)的周期為,圖象的一個對稱中心為,若先把函數(shù)的圖象向左平移個單位長度,然后再把所得圖象上各點的橫坐標(biāo)伸長到原來的2倍(縱坐標(biāo)不變),得到函數(shù)的圖象.
(1)求函數(shù)與的解析式;
(2)設(shè)函數(shù),試判斷在內(nèi)的零點個數(shù).
【答案】(1),;(2)見解析.
【解析】
(1)先根據(jù)周期和對稱中心可以求得,結(jié)合圖象變換可得的解析式;
(2)先把的表達(dá)式求出,結(jié)合的取值討論零點個數(shù).
(1)因為的周期為2,所以,
,又因為的圖象的一個對稱中心為,
所以,因為,所以,
所以,
所以.
(2)由(1)可知,,
設(shè),因為,所以,則,
設(shè),,則,
①當(dāng)或時,在內(nèi)有唯一零點,
這時,函數(shù)在內(nèi)有兩個零點.
②當(dāng)時,在內(nèi)有兩個不等零點,
這時,函數(shù)在內(nèi)有四個零點.
③當(dāng)時,,由,得或,
這時,函數(shù)在內(nèi)有三個零點.
④當(dāng)時,,由,得或(舍),
這時,函數(shù)在內(nèi)有兩個零點.
綜上可得,當(dāng)或時,在內(nèi)有兩個零點;
當(dāng)時,在內(nèi)有三個零點;
當(dāng)時,在內(nèi)有四個零點.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在含有個元素的集合中,若這個元素的一個排列(,,…,)滿足,則稱這個排列為集合的一個錯位排列(例如:對于集合,排列是的一個錯位排列;排列不是的一個錯位排列).記集合的所有錯位排列的個數(shù)為.
(1)直接寫出,,,的值;
(2)當(dāng)時,試用,表示,并說明理由;
(3)試用數(shù)學(xué)歸納法證明:為奇數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線:,不過坐標(biāo)原點的直線交于,兩點.
(Ⅰ)若,證明:直線過定點;
(Ⅱ)設(shè)過且與相切的直線為,過且與相切的直線為.當(dāng)與交于點時,求的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若直線和是異面直線,在平面內(nèi),在平面內(nèi),是平面與平面的交線,則下列命題正確的是( )
A. 與都不相交 B. 與都相交
C. 至多與中的一條相交 D. 至少與中的一條相交
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)f(x)是定義在R 且周期為1的函數(shù),在區(qū)間上, 其中集合D=,則方程f(x)-lgx=0的解的個數(shù)是____________
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)求函數(shù)的單調(diào)區(qū)間;
(2)記函數(shù)的極值點為,若,且,求證:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】函數(shù)在內(nèi)只取到一個最大值和一個最小值,且當(dāng)時,;當(dāng)時,.
(1)求函數(shù)的解析式.
(2)求函數(shù)的單調(diào)遞增區(qū)間.
(3)是否存在實數(shù),滿足不等式?若存在,求出的范圍(或值);若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓.
(1)若直線過點且被圓截得的弦長為2,求直線的方程;
(2)從圓外一點向圓引一條切線,切點為為坐標(biāo)原點,滿足,求點的軌跡方程及的最小值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com