已知為函數(shù)圖象上一點(diǎn),為坐標(biāo)原點(diǎn),記直線的斜率.
(1)若函數(shù)在區(qū)間上存在極值,求實(shí)數(shù)的取值范圍;
(2)當(dāng) 時(shí),不等式恒成立,求實(shí)數(shù)的取值范圍;
(3)求證:.
(1);(2);(3)證明過程詳見解析.
【解析】
試題分析:本題主要考查導(dǎo)數(shù)的應(yīng)用、不等式、數(shù)列等基礎(chǔ)知識(shí),考查思維能力、運(yùn)算能力和思維的嚴(yán)謹(jǐn)性.第一問,考查求導(dǎo)求極值問題;第二問,是恒成立問題,將第一問的代入,整理表達(dá)式,得出,構(gòu)造函數(shù),下面的主要任務(wù)是求出函數(shù)的最小值,所以;第三問,是不等式的證明,先利用放縮法構(gòu)造出所證不等式的形式,構(gòu)造數(shù)列,利用累加法得到所證不等式的左邊,右邊利用裂項(xiàng)相消法求和,再次利用放縮法得到結(jié)論.
試題解析:(1)由題意,,所以 2分
當(dāng)時(shí),;當(dāng)時(shí),.
所以在上單調(diào)遞增,在上單調(diào)遞減,故在處取得極大值.
因?yàn)楹瘮?shù)在區(qū)間(其中)上存在極值,
所以,得.即實(shí)數(shù)的取值范圍是. 4分
(2)由得,令,
則. 6分
令,則,
因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2013102923453314318383/SYS201310292346392698501874_DA.files/image030.png">所以,故在上單調(diào)遞增. 8分
所以,從而
在上單調(diào)遞增,
所以實(shí)數(shù)的取值范圍是. 10分
(3)由(2) 知恒成立,
即 12分
令則, 14分
所以, , ,.
將以上個(gè)式子相加得:,
故. 16分
考點(diǎn):1.函數(shù)極值的求法;2.恒成立問題;3.求函數(shù)的最值;4.放縮法;5.裂項(xiàng)相消法.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年安徽省六校教育研究會(huì)高三2月聯(lián)考理科數(shù)學(xué)試卷(解析版) 題型:解答題
已知為函數(shù)圖象上一點(diǎn),為坐標(biāo)原點(diǎn),記直線的斜率.
(Ⅰ)若函數(shù)在區(qū)間上存在極值,求實(shí)數(shù)的取值范圍;
(Ⅱ)如果對(duì)任意的,,有,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年安徽省六校教育研究會(huì)高三2月聯(lián)考文科數(shù)學(xué)試卷(解析版) 題型:解答題
已知為函數(shù)圖象上一點(diǎn),O為坐標(biāo)原點(diǎn),記直線的斜率.
(Ⅰ)若函數(shù)在區(qū)間上存在極值,求實(shí)數(shù)m的取值范圍;
(Ⅱ)設(shè),若對(duì)任意恒有,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年江西省高三上學(xué)期第四次月考數(shù)學(xué)文卷 題型:解答題
(13分)已知為函數(shù)圖象上一點(diǎn),為坐標(biāo)原點(diǎn).記直線的斜率。
(1)同學(xué)甲發(fā)現(xiàn):點(diǎn)從左向右運(yùn)動(dòng)時(shí),不斷增大,試問:他的判斷是否正確?若正確,請(qǐng)說明理由:若不正確,請(qǐng)給出你的判斷。
(2)同學(xué)乙發(fā)現(xiàn):總存在正實(shí)數(shù)、,使.試問:他的判斷是否正確?若不正確,請(qǐng)說明理由:若正確,請(qǐng)求出的取值范圍。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年廣東省高三下學(xué)期期初考試數(shù)學(xué)理卷 題型:解答題
(本小題滿分14分)
已知為函數(shù)圖象上一點(diǎn),為坐標(biāo)原點(diǎn).記直線的斜率。
(I)同學(xué)甲發(fā)現(xiàn):點(diǎn)從左向右運(yùn)動(dòng)時(shí),不斷增大,試問:他的判斷是否正確?若正確,請(qǐng)說明理由:若不正確,請(qǐng)給出你的判斷。
(Ⅱ)求證:當(dāng)時(shí),。
(III)同學(xué)乙發(fā)現(xiàn):總存在正實(shí)數(shù)、,使.試問:他的判斷是否正確?若不正確,請(qǐng)說明理由:若正確,請(qǐng)求出的取值范圍。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2010-2011年福建省高二3月月考數(shù)學(xué)理卷 題型:填空題
已知為函數(shù)圖象上一點(diǎn),為坐標(biāo)原點(diǎn).記直線的斜率為,
則的最大值為
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com