如果m>0,x,y∈[m,+∞),且(x+
x2-m2
)(y+
y2-m2
)=m2
,那么( 。
分析:考查方程的特性,推出x,y具有對(duì)稱性,容易得到選項(xiàng).
解答:解:由題意(x+
x2-m2
)(y+
y2-m2
)=m2

可知x,y在方程中具有對(duì)稱性,所以B、C、D都不正確.
故選A.
點(diǎn)評(píng):本題考查比較大小,考查學(xué)生分析問題解決問題的能力,是中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2013•房山區(qū)一模)設(shè)集合M是R的子集,如果點(diǎn)x0∈R滿足:?a>0,?x∈M,0<|x-x0|<a,稱x0為集合M的聚點(diǎn).則下列集合中以1為聚點(diǎn)的有( 。
{
n
n+1
|n∈N}
;    
{
2
n
|n∈N*}
;    
③Z;    
④{y|y=2x}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知A(-2,0),B(0,2),實(shí)數(shù)k是常數(shù),M,N是圓x2+y2+kx=0上不同的兩點(diǎn),P是圓x2+y2+kx=0上的動(dòng)點(diǎn),如果M,N關(guān)于x-y-1=0對(duì)稱,則△PAB面積的最大值是
3+
2
3+
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若A1,A2,…,Am為集合A={1,2,…,n}(n≥2且n∈N*)的子集,且滿足兩個(gè)條件:
①A1∪A2∪…∪Am=A;
②對(duì)任意的{x,y}⊆A,至少存在一個(gè)i∈{1,2,3,…,m},使Ai∩{x,y}={x}或{y}.則稱集合組A1,A2,…,Am具有性質(zhì)P.
如圖,作n行m列數(shù)表,定義數(shù)表中的第k行第l列的數(shù)為akl=
1(k∈Al)
0(k∉Al)

a11 a12 a1m
a21 a22 a2m
an1 an2 anm
(Ⅰ)當(dāng)n=4時(shí),判斷下列兩個(gè)集合組是否具有性質(zhì)P,如果是請(qǐng)畫出所對(duì)應(yīng)的表格,如果不是請(qǐng)說明理由;
集合組1:A1={1,3},A2={2,3},A3={4};
集合組2:A1={2,3,4},A2={2,3},A3={1,4}.
(Ⅱ)當(dāng)n=7時(shí),若集合組A1,A2,A3具有性質(zhì)P,請(qǐng)先畫出所對(duì)應(yīng)的7行3列的一個(gè)數(shù)表,再依此表格分別寫出集合A1,A2,A3;
(Ⅲ)當(dāng)n=100時(shí),集合組A1,A2,…,At是具有性質(zhì)P且所含集合個(gè)數(shù)最小的集合組,求t的值及|A1|+|A2|+…|At|的最小值.(其中|Ai|表示集合Ai所含元素的個(gè)數(shù))

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:單選題

如果m>0,x,y∈[m,+∞),且數(shù)學(xué)公式,那么


  1. A.
    x=y
  2. B.
    x>y
  3. C.
    x<y
  4. D.
    x≤y

查看答案和解析>>

同步練習(xí)冊答案