函數(shù)f(x)對任意實數(shù)x、y均有f(x+y)-f(y)=(x+2y+1)x成立,且f(1)=0.
(1)求f(0)的值;
(2)求f(x)的解析式;
(3)當x∈(0,  
1
2
)
時,f(x)+2<a恒成立,求a的取值范圍.
(1)令x=1,y=0得f(1)-f(0)=(1+2×0+1)×1=2,
移向得出f(0)=f(1)-2=0-2=-2
∴f(0)=-2.…(4分)
(2)令y=0得f(x)-f(0)=(x+2×0+1)x=x(x+1),…(7分)
于是f(x)=x(x+1)+f(0)=x2+x-2.…(9分)
(3)令g(x)=f(x)+2=x2+x=(x+
1
2
)2-
1
4
,…(11分)
根據(jù)二次函數(shù)的性質(zhì),
g(x)=f(x)+2=(x+
1
2
)2-
1
4
在區(qū)間(0,  
1
2
)
上是增函數(shù),…(13分)
∴g(x )∈(g(0),  g(
1
2
))
,即g(x)∈(0, 
3
4
)
.…(15分)
∵當x∈(0,  
1
2
)
時,f(x)+2<a恒成立,故a≥
3
4
. …(16分)
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

8、例5.已知函數(shù)f(x)對其定義域內(nèi)的任意兩個數(shù)a,b,當a<b時,都有f(a)<f(b),證明:f(x)=0至多有一個實根.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

函數(shù)f(x)對任意x∈R,滿足f(x)=f(4-x).如果方程f(x)=0恰有2011個實根,則所有這些實根之和為(  )
A、0B、2011C、4022D、8044

查看答案和解析>>

科目:高中數(shù)學 來源:江西省重點中學協(xié)作體2012屆高三第一次聯(lián)考數(shù)學文科試題 題型:013

設f(x),g(x),h(x)是R上的任意實值函數(shù),如下定義兩個函數(shù)(f·g)x和(f·g)(x):對任意x∈R,(f·g)(x)=f(g(x));(f·g)(x)=f(x)g(x),則下列等式恒成立的是

[  ]
A.

((f·g)·h)(x)=((f·h)·(g·h))(x)

B.

((f·g)·h)(x)=((f·h)·(g·h))(x)

C.

((f·g)·h)(x)=((f·h)·(g·h))(x)

D.

((f·g)·h)(x)=((f·h)·(g·h))(x)■(選項一樣)

查看答案和解析>>

科目:高中數(shù)學 來源:江西省重點中學協(xié)作體2012屆高三第一次聯(lián)考數(shù)學理科試題 題型:013

設f(x),g(x),h(x)是R上的實值函數(shù),如下定義兩個函數(shù)(f·g)(x)和(f·g)(x):對任意x∈R,(f·g)(x)=f(g(x));(f·g)(x)=f(x)g(x),則下列等式恒成立的是

[  ]
A.

((f·g)·h)(x)=((f·h)·(g·h))(x)

B.

((f·g)·h)(x)=((f·h)·(g·h))(x)

C.

((f·g)·h)(x)=((f·h)·(g·h))(x)

D.

((f·g)·h)(x)=((f·h)·(g·h))(x)

查看答案和解析>>

科目:高中數(shù)學 來源:高考數(shù)學一輪復習必備(第05課時):第一章 集合與簡易邏輯-簡易邏輯(解析版) 題型:解答題

例5.已知函數(shù)f(x)對其定義域內(nèi)的任意兩個數(shù)a,b,當a<b時,都有f(a)<f(b),證明:f(x)=0至多有一個實根.

查看答案和解析>>

同步練習冊答案