已知函數(shù)f(x)=(ax2+x)ex,其中e是自然數(shù)的底數(shù),a∈R.
(1)當(dāng)a<0時(shí),解不等式f(x)>0;
(2)若f(x)在[-1,1]上是單調(diào)函數(shù),求a的取值范圍;
(3)當(dāng)a=0時(shí),求整數(shù)k的所有值,使方程f(x)=x+2在[k,k+1]上有解.
(1)(2)(3){-3,1}
【解析】(1)因?yàn)?/span>ex>0,所以不等式f(x)>0即為ax2+x>0.
又a<0,所以不等式可化為x <0,所以不等式f(x)>0的解集為.
(2)f′(x)=(2ax+1)ex+(ax2+x)ex=[ax2+(2a+1)x+1]ex,
①當(dāng)a=0時(shí),f′(x)=(x+1)ex,f′(x)≥0在[-1,1]上恒成立,當(dāng)且僅當(dāng)x=-1時(shí)取等號(hào),故a=0符合要求;
②當(dāng)a≠0時(shí),令g(x)=ax2+(2a+1)x+1,因?yàn)?/span>Δ=(2a+1)2-4a=4a2+1>0,所以g(x)=0有兩個(gè)不相等的實(shí)數(shù)根x1、x2,不妨設(shè)x1>x2,因此f(x)有極大值又有極小值.若a>0,因?yàn)?/span>g(-1)·g(0)=-a<0,所以f(x)在(-1,1)內(nèi)有極值點(diǎn),故f(x)在[-1,1]上不單調(diào).若a<0,可知x1>0>x2,因?yàn)?/span>g(x)的圖象開口向下,要使f(x)在[-1,1]上單調(diào),因?yàn)?/span>g(0)=1>0,必須滿足即所以-≤a≤0.綜上可知,a的取值范圍是.
(3)當(dāng)a=0時(shí),方程即為xex=x+2,由于ex>0,所以x=0不是方程的解,所以原方程等價(jià)于ex--1=0.
令h(x)=ex--1,因?yàn)?/span>h′(x)=ex+>0對(duì)于x∈(-∞,0)∪(0,+∞)恒成立,所以h(x)在(-∞,0)和(0,+∞)內(nèi)是單調(diào)增函數(shù),又h(1)=e-3<0,h(2)=e2-2>0,h(-3)=e-3-<0,h(-2)=e-2>0,所以方程f(x)=x+2有且只有兩個(gè)實(shí)數(shù)根,且分別在區(qū)間[1,2]和[-3,-2]上,所以整數(shù)k的所有值為{-3,1}
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源:2013-2014學(xué)年高考數(shù)學(xué)總復(fù)習(xí)考點(diǎn)引領(lǐng)+技巧點(diǎn)撥第二章第2課時(shí)練習(xí)卷(解析版) 題型:填空題
函數(shù)f(x)=的值域?yàn)?/span>________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2013-2014學(xué)年高考數(shù)學(xué)總復(fù)習(xí)考點(diǎn)引領(lǐng)+技巧點(diǎn)撥第二章第14課時(shí)練習(xí)卷(解析版) 題型:解答題
已知函數(shù)f(x)=ax2-|x|+2a-1(a為實(shí)常數(shù)).
(1)若a=1,作函數(shù)f(x)的圖象;
(2)設(shè)f(x)在區(qū)間[1,2]上的最小值為g(a),求g(a)的表達(dá)式;
(3)設(shè)h(x)=,若函數(shù)h(x)在區(qū)間[1,2]上是增函數(shù),求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2013-2014學(xué)年高考數(shù)學(xué)總復(fù)習(xí)考點(diǎn)引領(lǐng)+技巧點(diǎn)撥第二章第13課時(shí)練習(xí)卷(解析版) 題型:解答題
如圖,兩個(gè)工廠A、B相距2km,點(diǎn)O為AB的中點(diǎn),要在以O為圓心,2km為半徑的圓弧MN上的某一點(diǎn)P處建一幢辦公樓,其中MA⊥AB,NB⊥AB.據(jù)測(cè)算此辦公樓受工廠A的“噪音影響度”與距離AP的平方成反比,比例系數(shù)為1;辦公樓受工廠B的“噪音影響度”與距離BP的平方也成反比,比例系數(shù)為4,辦公樓與A、B兩廠的“總噪音影響度”y是A、B兩廠“噪音影響度”的和,設(shè)AP為xkm.
(1)求“總噪音影響度”y關(guān)于x的函數(shù)關(guān)系式,并求出該函數(shù)的定義域;
(2)當(dāng)AP為多少時(shí),“總噪音影響度”最?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2013-2014學(xué)年高考數(shù)學(xué)總復(fù)習(xí)考點(diǎn)引領(lǐng)+技巧點(diǎn)撥第二章第13課時(shí)練習(xí)卷(解析版) 題型:解答題
市場(chǎng)營(yíng)銷人員對(duì)過(guò)去幾年某商品的價(jià)格及銷售數(shù)量的關(guān)系作數(shù)據(jù)分析發(fā)現(xiàn)有如下規(guī)律:該商品的價(jià)格每上漲x%(x>0),銷售數(shù)量就減少kx%(其中k為正常數(shù)).目前該商品定價(jià)為每個(gè)a元,統(tǒng)計(jì)其銷售數(shù)量為b個(gè).
(1)當(dāng)k=時(shí),該商品的價(jià)格上漲多少,才能使銷售的總金額達(dá)到最大?
(2)在適當(dāng)?shù)臐q價(jià)過(guò)程中,求使銷售總金額不斷增加時(shí)k的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2013-2014學(xué)年高考數(shù)學(xué)總復(fù)習(xí)考點(diǎn)引領(lǐng)+技巧點(diǎn)撥第二章第12課時(shí)練習(xí)卷(解析版) 題型:填空題
已知函數(shù)f(x)=lnx- (m∈R)在區(qū)間[1,e]上取得最小值4,則m=________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2013-2014學(xué)年高考數(shù)學(xué)總復(fù)習(xí)考點(diǎn)引領(lǐng)+技巧點(diǎn)撥第二章第12課時(shí)練習(xí)卷(解析版) 題型:解答題
設(shè)函數(shù)f(x)=(x2+ax+b)ex(x∈R).
(1)若a=2,b=-2,求函數(shù)f(x)的極大值;
(2)若x=1是函數(shù)f(x)的一個(gè)極值點(diǎn).
①試用a表示b;
②設(shè)a>0,函數(shù)g(x)=(a2+14)ex+4.若?ξ1、ξ2∈[0,4],使得|f(ξ1)-g(ξ2)|<1成立,求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2013-2014學(xué)年高考數(shù)學(xué)總復(fù)習(xí)考點(diǎn)引領(lǐng)+技巧點(diǎn)撥第二章第11課時(shí)練習(xí)卷(解析版) 題型:解答題
求拋物線y=x2上點(diǎn)到直線x-y-2=0的最短距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2013-2014學(xué)年高考數(shù)學(xué)總復(fù)習(xí)考點(diǎn)引領(lǐng)+技巧點(diǎn)撥第三章第9課時(shí)練習(xí)卷(解析版) 題型:解答題
在△ABC中,角A,B,C的對(duì)邊分別為a,b,c,C=,a=5,△ABC的面積為10.
(1)求b,c的值;
(2)求cos的值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com