分析 作出直線y=kx+2與曲線y=$\sqrt{1-{x^2}}$的圖象,利用數(shù)形結(jié)合進(jìn)行求解即可
解答 解:由y=$\sqrt{1-{x^2}}$得x2+y2=1,(y≥0),對應(yīng)的軌跡為上半圓,
∵直線y=kx+2過定點(diǎn)A(0,2),
∴當(dāng)k=±$\sqrt{3}$時(shí),直線y=kx+2與圓x2+y2=1相切,
由圖象可知當(dāng)直線y=kx+2經(jīng)過點(diǎn)B(-1,0)或C(1,0)時(shí),直線和圓有兩個(gè)交點(diǎn),
此時(shí)k=±2,
則若直線y=kx+1與曲線y=$\sqrt{1-{x^2}}$恰有兩個(gè)共同點(diǎn),
故k∈$[{-2,-\sqrt{3}})∪({\sqrt{3},2}]$
故答案為:$[{-2,-\sqrt{3}})∪({\sqrt{3},2}]$
點(diǎn)評 本題主要考查直線和圓的位置關(guān)系的應(yīng)用,利用數(shù)形結(jié)合是解決本題的關(guān)鍵
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | -$\frac{1}{9}$ | B. | -$\frac{2}{9}$ | C. | -$\frac{1}{3}$ | D. | -$\frac{7}{18}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 2sin10° | B. | -1 | C. | $\sqrt{3}$ | D. | 0 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com