已知等比數(shù)列{an}的前n項和為Sn,且滿足Sn=3n+k.
(1)求k的值及數(shù)列{an}的通項公式;
(2)若數(shù)列{bn}滿足=,求數(shù)列{bn}的前n項和Tn
【答案】分析:(1)當(dāng)n≥2時利用遞推公式an=Sn-Sn-1先求an,然后由a1=S1=3+k滿足通項可求k及an
(2)由,可求bn,結(jié)合數(shù)列的特點,考慮利用錯位相減法可求數(shù)列的和
解答:解(1)當(dāng)n≥2時由…(2分)
∵a1=S1=3+k,
∴k=-1,…(4分)
(2)由,可得
,…(6分)
…(7分)
…(9分)
兩式相減可得,
=
=…(10分)
               
…(12分)
點評:本題主要考查了利用數(shù)列的遞推公式an=Sn-Sn-1在求解數(shù)列的通項公式中的應(yīng)用,數(shù)列求和方法的錯位相減法是求和的難點所在.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

5、已知等比數(shù)列{an}的前n項和為Sn,公比q≠1,若S5=3a4+1,S4=2a3+1,則q等于( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知等比數(shù)列{an}中,a2=9,a5=243.
(1)求{an}的通項公式;
(2)令bn=log3an,求數(shù)列{
1bnbn+1
}的前n項和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知等比數(shù)列{an}滿足a1•a7=3a3a4,則數(shù)列{an}的公比q=
3
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知等比數(shù)列{an}中a1=64,公比q≠1,且a2,a3,a4分別為某等差數(shù)列的第5項,第3項,第2項.
(Ⅰ)求數(shù)列{an}的通項公式;
(Ⅱ)設(shè)bn=log2an,求數(shù)列{|bn|}的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知等比數(shù)列{an}中,a3+a6=36,a4+a7=18.若an=
12
,則n=
9
9

查看答案和解析>>

同步練習(xí)冊答案