1.圓(x-2)2+y2=2上的點與點A(-1,3)的距離的最大值為( 。
A.$2\sqrt{2}$B.$4\sqrt{2}$C.$6\sqrt{2}$D.$8\sqrt{2}$

分析 (x-2)2+y2=2上的點與點A(-1,3)的距離的最大值d=|AC|+r.(r是圓半徑)

解答 解:圓C:(x-2)2+y2=2的圓心C(2,0),半徑r=$\sqrt{2}$,|AC|=$\sqrt{9+9}$=3$\sqrt{2}$,
∴(x-2)2+y2=2上的點與點A(-1,3)的距離的最大值:d=|AC|+r=4$\sqrt{2}$.
故選B.

點評 本題考查點到圓上一點距離的最大值的求法,是基礎(chǔ)題,解題要注意兩點間距離公式的合理運(yùn)用.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.函數(shù)y=x2-2x-1(-2≤x≤2)的值域為[-2,7].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知二次函數(shù)f(x)=x2-2ax+5(a>1).
(Ⅰ)若f(x)的定義域和值域均是[1,a],求實數(shù)a的值;
(Ⅱ)若f(x)在區(qū)間(-∞,2]上是減函數(shù),求f(x)在區(qū)間[1,a+1]上的最小值和最大值;
(Ⅲ) 若f(x)在區(qū)間(1,3)上有零點,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.若a<b<0,則下列不等式中不成立的是②(只填序號)
①$\frac{1}{a}$>$\frac{1}$
②$\frac{1}{a-b}$>$\frac{1}{a}$
③|a|>|b|
④a2>b2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.執(zhí)行如圖所示的框圖,輸出值x=12.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知雙曲線的一個焦點為(4,0),離心率為e=2.
(1)求雙曲線的標(biāo)準(zhǔn)方程;
(2)寫出該雙曲線的漸進(jìn)線方程,并求它的焦點(4,0)到另一條漸進(jìn)線的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.等腰三角形ABC中,AB=4,AC=BC=3,點E,F(xiàn)分別位于兩腰上,E,F(xiàn)將△ABC分成周長相等的三角形與四邊形,面積分別為S1,S2,則$\frac{S_1}{S_2}$的最大值為$\frac{25}{11}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.若不等式(x-a)?(x+a)=(1-x+a)(1+x+a)=(1+a)2-x2<1對任意實數(shù)x成立,則(  )
A.-1<a<1B.-2<a<0C.0<a<2D.-$\frac{3}{2}$<α<$\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.函數(shù)f(x)=tan2x的定義域為{x|x≠$\frac{kπ}{2}$+$\frac{π}{4}$,k∈Z}.

查看答案和解析>>

同步練習(xí)冊答案