【題目】函數(shù)y=(x+1)(x﹣1)在x=1處的導(dǎo)數(shù)為

【答案】2
【解析】解:y=(x+1)(x﹣1)=x2﹣1, ∴y′=2x,
∴y′|x=1=2,
所以答案是:2
【考點精析】掌握基本求導(dǎo)法則是解答本題的根本,需要知道若兩個函數(shù)可導(dǎo),則它們和、差、積、商必可導(dǎo);若兩個函數(shù)均不可導(dǎo),則它們的和、差、積、商不一定不可導(dǎo).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如果函數(shù)f(x)的圖象關(guān)于原點對稱,在區(qū)間[1,5]上是減函數(shù),且最小值為3,那么f(x)在區(qū)間[﹣5,﹣1]上是( 。
A.增函數(shù)且最小值為3
B.增函數(shù)且最大值為3
C.減函數(shù)且最小值為﹣3
D.減函數(shù)且最大值為﹣3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知A={x|x+1>0},B={﹣2,﹣1,0,1},則(RA)∩B=(  )
A.{﹣2,﹣1}
B.{﹣2}
C.{﹣2,0,1}
D.{0,1}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若x∈R,則x=2”是“(x﹣2)(x﹣1)=0”的(
A.充分而不必要條件
B.必要而不充分條件
C.充要條件
D.既不充分又不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為了考察兩個變量x和y之間的線性相關(guān)性,甲、乙兩個同學(xué)各自獨立地作10次和15次試驗,并且利用線性回歸方法,求得回歸直線分別為l1和l2 . 已知在兩個人的試驗中發(fā)現(xiàn)對變量x的觀測數(shù)據(jù)的平均值恰好相等,都為s,對變量y的觀測數(shù)據(jù)的平均值也恰好相等,都為t.那么下列說法正確的是(
A.直線l1和l2相交,但是交點未必是點(s,t)
B.直線l1和l2有交點(s,t)
C.直線l1和l2由于斜率相等,所以必定平行
D.直線l1和l2必定重合

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知直線l∥平面α,P∈α,那么過點P且平行于直線l的直線(
A.有無數(shù)條,不一定在平面α內(nèi)
B.只有一條,不在平面α內(nèi)
C.有無數(shù)條,一定在平面α內(nèi)
D.只有一條,且在平面α內(nèi)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)x∈R,則“2﹣x≥0”是“|x﹣1|≤1”的( 。
A.充分而不必要條件
B.必要而不充分條件
C.充要條件
D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】有15人進了家電超市,其中有9人買了電視機,有7人買了電腦,兩種均買了的有3人,則這兩種均沒買的有人.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知集合U={1,2,3,4,5},A={1,2,3},B={2,4},則A∩(UB)=(
A.{1,2,3,5}
B.{2,4}
C.{1,3}
D.{2,5}

查看答案和解析>>

同步練習(xí)冊答案