將一個四棱錐的每個頂點(diǎn)染上一種顏色,并使同一條棱上的兩個端點(diǎn)異色,若只有5種顏色可供使用,則不同的染色方法總數(shù)有( )
A.240種
B.300種
C.360種
D.420種
【答案】分析:首先給頂點(diǎn)P選色,有5種結(jié)果,再給A選色有4種結(jié)果,再給B選色有3種結(jié)果,最后分兩種情況即C與B同色與C與B不同色來討論,根據(jù)分步計(jì)數(shù)原理和分類計(jì)數(shù)原理得到結(jié)果.
解答:解:四棱錐為P-ABCD.下面分兩種情況即C與B同色與C與B不同色來討論,
(1)各個點(diǎn)的不同的染色方法 P:C51,A:C41,B:C31,C與B同色:1,D:C31 ,故共有 •C41•C31•C31 種.
(2)各個點(diǎn)的不同的染色方法 P:C51,A:C41,B:C31,C與B不同色C21,D:C21,故共有•C41•C31•C21•C21
由分步計(jì)數(shù)原理可得不同的染色方法總數(shù)有 •C41•C31•C31 +•C41•C31•C21•C21 =420.
故選D.
點(diǎn)評:本題主要排列與組合及兩個基本原理,總結(jié)此類問題的做法,對于復(fù)雜一點(diǎn)的計(jì)數(shù)問題,有時分類以后,每類方法并不都是一步完成的,必須在分類后又分步,綜合利用兩個原理解決,屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

8、將一個四棱錐的每個頂點(diǎn)染上一種顏色,并使同一條棱的兩端異色.若只有五種顏色可供使用,則不同的染色方法種數(shù)為
420

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•蕪湖二模)將一個四棱錐的每個頂點(diǎn)染上一種顏色,并使同一條棱上的兩個端點(diǎn)異色,若只有5種顏色可供使用,則不同的染色方法總數(shù)有( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

將一個四棱錐的每個頂點(diǎn)染上一種顏色,并使同一條棱上的兩個頂點(diǎn)不同色,現(xiàn)有5種不同顏色可用,則不同染色方法的總數(shù)是
420
420
.(用數(shù)字作答)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010-2011年云南省玉溪一中高二下學(xué)期期末考試?yán)頂?shù) 題型:單選題

將一個四棱錐的每個頂點(diǎn)染上種顏色,并使每一條棱的兩端點(diǎn)異色,若只有五種顏色可供使用,則不同的染色方法總數(shù)為(    )

A.420B.340C.260D.120

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:河南省09-10學(xué)年高二下學(xué)期期末數(shù)學(xué)試題(文科) 題型:選擇題

、將一個四棱錐的每個頂點(diǎn)染上一種顏色,并使同一條棱的兩端異色,若只有五種顏色可供使用,則不同的染色方法總數(shù)為(  )種

A、240    B、300    C、360     D、420

 

查看答案和解析>>

同步練習(xí)冊答案