【題目】若實(shí)數(shù)a,b,c滿足|a﹣c|<|b|,則下列不等式中成立的是(
A.|a|>|b|﹣|c|
B.|a|<|b|+|c|
C.a>c﹣b
D.a<b+c

【答案】B
【解析】解:因?yàn)閨a|﹣|c|≤|a﹣c|,|a﹣c|<|b||a|﹣|c|<|b|,即|a|<|b|+|c|.故選:B.
【考點(diǎn)精析】利用絕對(duì)值不等式的解法對(duì)題目進(jìn)行判斷即可得到答案,需要熟知含絕對(duì)值不等式的解法:定義法、平方法、同解變形法,其同解定理有;規(guī)律:關(guān)鍵是去掉絕對(duì)值的符號(hào).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)α,β,γ為兩兩不重合的平面,l,m,n為兩兩不重合的直線,給出下列四個(gè)命題:
①若mα,nβ,α⊥β,則m⊥n;
②若m⊥α,n∥β且α∥β,則m⊥n;
③若α∥β,lα,則l∥β;
④若α∩β=l,β∩γ=m,γ∩α=n,l∥γ,則m∥n.
其中真命題的序號(hào)有

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】命題“x∈R,若x2>0,則x>0”的逆命題、否命題和逆否命題中,正確命題的個(gè)數(shù)是

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=(x+1)ln(x+1),g(x)=kxex(k為常數(shù),e=2.71828…是自然對(duì)數(shù)的底數(shù)),g′(x)為g(x)的導(dǎo)函數(shù),且g′(0)=1,
(1)求k的值;
(2)對(duì)任意x>0,證明:f(x)<g(x);
(3)若對(duì)所有的x≥0,都有f(x)≥ax成立,求實(shí)數(shù)a的取值范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)全集U=R,集合A={x|﹣1<x<4},B={y|y=x+1,x∈A},則A∩B=;(UA)∩(UB)=

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知x∈R,a=x2﹣1,b=2x+2.求證a,b中至少有一個(gè)不小于0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知a,b∈R,i是虛數(shù)單位,若a﹣i與2+bi互為共軛復(fù)數(shù),則(a+bi)2=(
A.5﹣4i
B.5+4i
C.3﹣4i
D.3+4i

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】我省新高考采用“7選3”的選考模式,即從政治、歷史、地理、物理、化學(xué)、生物、技術(shù)這7門科目中選3門作為選考科目,那么所有可能的選考類型共有種;甲、乙兩人根據(jù)自己的興趣特長以及職業(yè)生涯規(guī)劃愿景進(jìn)行選課,甲必選物理和政治,乙不選技術(shù),則兩人至少有一門科目相同的選法共有種(用數(shù)學(xué)作答)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某空間幾何體的正視圖是三角形,則該幾何體不可能是(
A.圓柱
B.圓錐
C.四面體
D.三棱柱

查看答案和解析>>

同步練習(xí)冊(cè)答案