精英家教網 > 高中數學 > 題目詳情
“|x-1|<1”是”log2x<1”的( )
A.充分不必要條件
B.必要不充分條件
C.充要條件
D.既不充分也不必要條件
【答案】分析:由|x-1|<1⇒0<x<2.log2x<1⇒0<x<2,知“|x-1|<1”是”log2x<1”的充要條件.
解答:解:∵|x-1|<1⇒0<x<2.
log2x<1⇒0<x<2,
∴“|x-1|<1”是”log2x<1”的充要條件.
故選C.
點評:本題考查必要條件、充要條件、充要條件的判斷,解題時要注意不等式的合理運用.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

設函數y=f(x)定義在R上,對于任意實數m,n,恒有f(m+n)=f(m)•f(n),且當x>0時,0<f(x)<1
(1)求證:f(0)=1且當x<0時,f(x)>1
(2)求證:f(x)在R上是減函數;
(3)設集合A=(x,y)|f(-x2+6x-1)•f(y)=1,B=(x,y)|y=a,
且A∩B=∅,求實數a的取值范圍.

查看答案和解析>>

科目:高中數學 來源:2012-2013學年浙江省臺州市仙居縣宏大中學高一(上)期中數學試卷(解析版) 題型:解答題

設函數y=f(x)定義在R上,對于任意實數m,n,恒有f(m+n)=f(m)•f(n),且當x>0時,0<f(x)<1
(1)求證:f(0)=1且當x<0時,f(x)>1
(2)求證:f(x)在R上是減函數;
(3)設集合A=(x,y)|f(-x2+6x-1)•f(y)=1,B=(x,y)|y=a,
且A∩B=∅,求實數a的取值范圍.

查看答案和解析>>

科目:高中數學 來源:2012-2013學年江西省宜春市上高二中高三(上)第一次月考數學試卷(理科)(解析版) 題型:解答題

設函數y=f(x)定義在R上,對于任意實數m,n,恒有f(m+n)=f(m)•f(n),且當x>0時,0<f(x)<1
(1)求證:f(0)=1且當x<0時,f(x)>1
(2)求證:f(x)在R上是減函數;
(3)設集合A=(x,y)|f(-x2+6x-1)•f(y)=1,B=(x,y)|y=a,
且A∩B=∅,求實數a的取值范圍.

查看答案和解析>>

科目:高中數學 來源:2011-2012學年廣東省梅州市梅縣東山中學高一(上)期中數學試卷(解析版) 題型:解答題

設函數y=f(x)定義在R上,對于任意實數m,n,恒有f(m+n)=f(m)•f(n),且當x>0時,0<f(x)<1
(1)求證:f(0)=1且當x<0時,f(x)>1
(2)求證:f(x)在R上是減函數;
(3)設集合A=(x,y)|f(-x2+6x-1)•f(y)=1,B=(x,y)|y=a,
且A∩B=∅,求實數a的取值范圍.

查看答案和解析>>

科目:高中數學 來源:2009-2010學年福建省南平市高中高一(上)期中數學復習試卷2(必修2)(解析版) 題型:解答題

設函數y=f(x)定義在R上,對于任意實數m,n,恒有f(m+n)=f(m)•f(n),且當x>0時,0<f(x)<1
(1)求證:f(0)=1且當x<0時,f(x)>1
(2)求證:f(x)在R上是減函數;
(3)設集合A=(x,y)|f(-x2+6x-1)•f(y)=1,B=(x,y)|y=a,
且A∩B=∅,求實數a的取值范圍.

查看答案和解析>>

同步練習冊答案