【題目】在四棱錐中,側(cè)面底面,底面為直角梯形,∥,,,,,為的中點(diǎn),為的中點(diǎn)。
(1)求證:∥平面;
(2)求二面角的余弦值。
【答案】(1)見證明;(2)
【解析】
(1)利用面外線與面內(nèi)線平行證明面外線平行于平面。
(2)建立空間直角坐標(biāo)系,利用兩個半平面的法向量的夾角余弦值,來求二面角的平面角的余弦值,或用幾何法找到二面角的平面角來求余弦值。
(1)連接交于,并連接,,
,,為中點(diǎn),,且,
四邊形為平行四邊形,
為中點(diǎn),又為中點(diǎn),,
平面,平面,平面.
(2)〖解法1〗(向量法)連接,由E為AD的中點(diǎn)及,
得則,∵側(cè)面底面,且交于,
∴面,
如圖所示,以E為原點(diǎn),EA、EB、EP分別為
x、y、z軸建立空間直角坐標(biāo)系,
則,,,C.
∵為的中點(diǎn),∴F
∴,
設(shè)平面EBF法向量為,則,
取,
平面EBA法向量可取:,
設(shè)二面角F-BE-A的大小為,顯然為鈍角,
∴,
∴二面角F-BE-A的余弦值為
(2)〖解法2〗(幾何法1)連接,
由E為AD的中點(diǎn)及,
得∵,
取中點(diǎn),連,,,
側(cè)面底面,且交于,,
∴面
∵ 面 面
∴
∵為的中點(diǎn),為的中點(diǎn)
,
∴
∴∠MEA為二面角F-BE-A的平面角
在中,,
在中,由余弦定理得
∴在中,由余弦定理得cos∠MEA,
所以二面角F-BE-A的余弦值為.
(2)〖解法3〗(幾何法2)連接,由E為AD的中點(diǎn)及,
得側(cè)面底面,∴面,
∵,
連交于點(diǎn),則為中點(diǎn),連,,,
∵為的中點(diǎn),∴,面,
又,∴ ∴
∴∠FNQ為二面角F-BE-A的平面角的補(bǔ)角
在中,,
由勾股定理得
∴cos∠FNQ,
所以二面角F-BE-A的余弦值為.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】焦距為的橢圓(),如果滿足“”,則稱此橢圓為“等差橢圓”.
(1)如果橢圓()是“等差橢圓”,求的值;
(2)如果橢圓 ()是“等差橢圓”,過作直線與此“等差橢圓”只有一個公共點(diǎn),求此直線的斜率;
(3)橢圓()是“等差橢圓”,如果焦距為12,求此“等差橢圓”的方程;
(4)對于焦距為12的“等差橢圓”,點(diǎn)為橢圓短軸的上頂點(diǎn),為橢圓上異于點(diǎn)的任一點(diǎn),為關(guān)于原點(diǎn)的對稱點(diǎn)(也異于),直線分別與軸交于兩點(diǎn),判斷以線段為直徑的圓是否過定點(diǎn)?說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=sin(2ωx+)+sin(2ωx-)+2cos2ωx,其中ω>0,且函數(shù)f(x)的最小正周期為π
(1)求ω的值;
(2)求f(x)的單調(diào)增區(qū)間
(3)若函數(shù)g(x)=f(x)-a在區(qū)間[-,]上有兩個零點(diǎn),求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】高中生在被問及“家,朋友聚集的地方,個人空間”三個場所中“感到最幸福的場所在哪里?”這個問題時,從中國某城市的高中生中,隨機(jī)抽取了55人,從美國某城市的高中生中隨機(jī)抽取了45人進(jìn)行答題.中國高中生答題情況是:選擇家的占、朋友聚集的地方占、個人空間占.美國高中生答題情況是:朋友聚集的地方占、家占、個人空間占.如下表:
在家里最幸福 | 在其它場所幸福 | 合計(jì) | |
中國高中生 | |||
美國高中生 | |||
合計(jì) |
(Ⅰ)請將列聯(lián)表補(bǔ)充完整;試判斷能否有的把握認(rèn)為“戀家”與否與國別有關(guān);
(Ⅱ)從被調(diào)查的不“戀家”的美國學(xué)生中,用分層抽樣的方法選出4人接受進(jìn)一步調(diào)查,再從4人中隨機(jī)抽取2人到中國交流學(xué)習(xí),求2人中含有在“個人空間”感到幸福的學(xué)生的概率.
附:,其中.
0.050 | 0.025 | 0.010 | 0.001 | |
3.841 | 5.024 | 6.635 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】[選修4-4:坐標(biāo)系與參數(shù)方程]
在直角坐標(biāo)系中,曲線的參數(shù)方程為(為參數(shù)),以原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.
(1)寫出曲線的普通方程和曲線的直角坐標(biāo)方程;
(2)已知點(diǎn)是曲線上的動點(diǎn),求點(diǎn)到曲線的最小距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某醫(yī)療器械公司在全國共有個銷售點(diǎn),總公司每年會根據(jù)每個銷售點(diǎn)的年銷量進(jìn)行評價分析.規(guī)定每個銷售點(diǎn)的年銷售任務(wù)為一萬四千臺器械.根據(jù)這個銷售點(diǎn)的年銷量繪制出如下的頻率分布直方圖.
(1)完成年銷售任務(wù)的銷售點(diǎn)有多少個?
(2)若用分層抽樣的方法從這個銷售點(diǎn)中抽取容量為的樣本,求該五組,,,,,(單位:千臺)中每組分別應(yīng)抽取的銷售點(diǎn)數(shù)量.
(3)在(2)的條件下,從前兩組,中的銷售點(diǎn)隨機(jī)選取個,記這個銷售點(diǎn)在中的個數(shù)為,求的分布列和期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為推動文明城市創(chuàng)建,提升城市整體形象,2018年12月30日鹽城市人民政府出臺了《鹽城市停車管理辦法》,2019年3月1日起施行.這項(xiàng)工作有利于市民養(yǎng)成良好的停車習(xí)慣,幫助他們樹立綠色出行的意識,受到了廣大市民的一致好評.現(xiàn)從某單位隨機(jī)抽取80名職工,統(tǒng)計(jì)了他們一周內(nèi)路邊停車的時間(單位:小時),整理得到數(shù)據(jù)分組及頻率分布直方圖如下:
組號 | 分組 | 頻數(shù) |
1 | 6 | |
2 | 8 | |
3 | 22 | |
4 | 28 | |
5 | 12 | |
6 | 4 |
(1)從該單位隨機(jī)選取一名職工,試計(jì)算這名職工一周內(nèi)路邊停車的時間少于8小時的頻率;
(2)求頻率分布直方圖中的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的兩個焦點(diǎn),,且橢圓過點(diǎn),,且是橢圓上位于第一象限的點(diǎn),且的面積.
(1)求點(diǎn)的坐標(biāo);
(2)過點(diǎn)的直線與橢圓相交于點(diǎn),,直線,與軸相交于,兩點(diǎn),點(diǎn),則是否為定值,如果是定值,求出這個定值,如果不是請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com