精英家教網 > 高中數學 > 題目詳情
已知α∈{-1,,1,2},則使函數y=xα在[0,+∞)上單調遞增的所有α值為(    )。
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

已知曲線C:xy=1,過C上一點An(xn,yn)作一斜率為kn=-
1
xn+2
的直線交曲線C于另一點An+1(xn+1,yn+1),點列An(n=1,2,3,…)的橫坐標構成數列{xn},其中x1=
11
7

(1)求xn與xn+1的關系式;
(2)求證:{
1
xn-2
+
1
3
}是等比數列;
(3)求證:(-1)x1+(-1)2x2+(-1)3x3+…+(-1)nxn<1(n∈N,n≥1).

查看答案和解析>>

科目:高中數學 來源: 題型:

已知函數f(x)=
4x
x2+a

在探究a=1時,函數f(x)在區(qū)間[0,+∞)上的最大值問題.為此,我們列表如下
y 0 0.1 0.2 0.5 0.8 1 1.2 1.5 1.8 2 4 6
y 0 0.396 0.769 1.6 1.951 2 1.967 1.846 1.698 1.6 0.941 0.649
請觀察表中y值隨x值變化的特點,解答以下兩個問題.
(1)寫出函數f(x)在[0,+∞)(a=1)上的單調區(qū)間;指出在各個區(qū)間上的單調性,并對其中一個區(qū)間的單調性用定義加以證明.
(2)寫出函數f(x)(a=1)的定義域,并求f(x)值域.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知函數f(x)=x2-2ax+5(a>1).
(1)若函數f(x)的定義域和值域均為[1,a],求實數a的值;
(2)若f(x)在區(qū)間(-∞,2]上是減函數,且對任意的x1,x2∈[1,a+1],總有|f(x1)-f(x2)|≤4,求實數a的取值范圍;
(3)若f(x)在x∈[1,3]上有零點,求實數a的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

某初級中學有三個年級,各年級男、女生人數如下表:
初一年級 初二年級 初三年級
女生 370 z 200
男生 380 370 300
已知在全校學生中隨機抽取1名,抽到初二年級女生的概率是0.19.
(1)求z的值;
(2)用分層抽樣的方法在初三年級中抽取一個容量為5的樣本,將該樣本看成一個總體,從中任選2名學生,求至少有1名女生的概率;
(3)用隨機抽樣的方法從初二年級女生中選出8人,測量它們的左眼視力,結果如下:1.2,1.5,1.2,1.5,1.5,1.3,1.0,1.2.把這8人的左眼視力看作一個總體,從中任取一個數,求該數與樣本平均數之差的絕對值不超過0.1的概率.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知橢圓
x2
a2
+
y2
b2
=1 (a>b>0)
的面積為abπ,若全集U={(x,y)|x∈R,y∈R},
集合A={(x,y)|
x2
16
+
y2
9
≤1},B={(x,y)|3x+4y+12>0}
,則A∩(?uB)所表示的圖形的面積為( 。
A、6(π-1)
B、9π+6
C、3π-3
D、3(π-2)

查看答案和解析>>

同步練習冊答案