若函數(shù)y=ax與y=-
b
x
在(0,+∞)上都是減函數(shù),則y=ax2+bx在(0,+∞)上是( 。
A、增函數(shù)B、減函數(shù)
C、先增后減D、先減后增
分析:根據(jù)y=ax與y=-
b
x
在(0,+∞)上都是減函數(shù),得到a<0,b<0,對(duì)二次函數(shù)配方,即可判斷y=ax2+bx在(0,+∞)上的單調(diào)性.
解答:解:∵y=ax與y=-
b
x
在(0,+∞)上都是減函數(shù),
∴a<0,b<0,
∴y=ax2+bx的對(duì)稱軸方程x=-
b
2a
<0,
∴y=ax2+bx在(0,+∞)上為減函數(shù).
故答案B
點(diǎn)評(píng):此題是個(gè)基礎(chǔ)題.考查基本初等函數(shù)的單調(diào)性,考查學(xué)生熟練應(yīng)用知識(shí)分析解決問(wèn)題的能力.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若函數(shù)y=ax與y=-
bx
在(0,+∞)上都是減函數(shù),則函數(shù)y=ax2+bx在(0,+∞)上是單調(diào)遞
減函數(shù)
減函數(shù)
函數(shù).(填“增函數(shù)”或“減函數(shù)”)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若函數(shù)y=ax與y=
b
x
在(0,+∞)
上都是減函數(shù),則y=ax2+bx在(-∞,0)上是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2007年上海市徐匯區(qū)零陵中學(xué)高三3月綜合練習(xí)數(shù)學(xué)試卷(五)(解析版) 題型:解答題

(1)已知函數(shù)f(x)=ax-x(a>1).
①若f(3)<0,試求a的取值范圍;
②寫(xiě)出一組數(shù)a,x(x≠3,保留4位有效數(shù)字),使得f(x)<0成立;
(2)在曲線上存在兩個(gè)不同點(diǎn)關(guān)于直線y=x對(duì)稱,求出其坐標(biāo);若曲線(p≠0)上存在兩個(gè)不同點(diǎn)關(guān)于直線y=x對(duì)稱,求實(shí)數(shù)p的范圍;
(3)當(dāng)0<a<1時(shí),就函數(shù)y=ax與y=logax的圖象的交點(diǎn)情況提出你的問(wèn)題,并取加以研究.當(dāng)0<a<1時(shí),就函數(shù)y=ax與y=logax的圖象的交點(diǎn)情況提出你的問(wèn)題,并加以解決.(說(shuō)明:①函數(shù)f(x)=xlnx有如下性質(zhì):在區(qū)間上單調(diào)遞減,在區(qū)間上單調(diào)遞增.解題過(guò)程中可以利用;②將根據(jù)提出和解決問(wèn)題的不同層次區(qū)別給分.)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2011-2012學(xué)年山東省高三單元測(cè)試文科數(shù)學(xué)試卷 題型:選擇題

若函數(shù)y=ax與y=-在(0,+∞)上都是減函數(shù),則y=ax2+bx在(0,+∞)

 

上是(    )

   A.增函數(shù)     B.減函數(shù)   C.先增后減    D.先減后增

 

查看答案和解析>>

同步練習(xí)冊(cè)答案