本題滿分15分)設(shè)函數(shù)
(Ⅰ)求
單調(diào)區(qū)間(Ⅱ)求所有實數(shù)
,使
對
恒成立
注:
為自然對數(shù)的底數(shù)
:(Ⅰ)因為
所以
由于
所以
的增區(qū)間為
,減區(qū)間為
。
(Ⅱ)由題意得
即
。由(Ⅰ)知
在
單調(diào)遞增,要使
對
恒成立,只要
解得
練習(xí)冊系列答案
相關(guān)習(xí)題
科目:高中數(shù)學(xué)
來源:不詳
題型:單選題
函數(shù)f(x)的圖像如圖所示,下列數(shù)值排序正確的是 ( )
A.0<f’(2)<f’(3)<f(3)-f(2) |
B.0<f’(3)<f(3)-f(2) <f’(2) |
C.0<f(3)<f’(2)<f(3)-f(2) |
D.0<f(3)-f(2)<f’(2)<f’(3) |
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
已知函數(shù)
,其中
為大于零的常數(shù).
(Ⅰ)若曲線
在點(1,
)處的切線與直線
平行,求
的值;
(Ⅱ)求函數(shù)
在區(qū)間[1,2]上的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:單選題
已知函數(shù)
的圖象與x軸的一個交點為A,函數(shù)圖象在點A處的切線與兩條坐標(biāo)軸圍成的面積為 ( )
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
(本小題滿分14分)已知函數(shù)
.
(Ⅰ)當(dāng)
時,求曲線
在
處的切線方程;
(Ⅱ)求函數(shù)
在區(qū)間
上的最小值;
(Ⅲ)若關(guān)于的方程
在區(qū)間
內(nèi)有兩個不相等的實數(shù)根,求實數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
(本小題滿分16分)
已知函數(shù)
的導(dǎo)數(shù)是
.
(1)求
時,
在x=1處的切線方程。
(2)當(dāng)
時,求證:對于任意的兩個不等的正數(shù)
,有
;
(3)對于任意的兩個不等的正數(shù)
,若
恒成立,求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
(本小題滿分12分)
設(shè)
,其中
為正實數(shù)
(Ⅰ)當(dāng)
時,求
的極值點;
(Ⅱ)若
為
上的單調(diào)函數(shù),求
的取值范圍。
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:填空題
曲線
在點
處的切線傾斜角為__________
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:單選題
曲線
在點A(0,1)處的切線斜率為( )
A.1 | B.2 | C. | D. |
查看答案和解析>>