(12分)
如圖,四棱錐中,⊥底面,底面為梯形,,,且,點(diǎn)是棱上的動(dòng)點(diǎn).
(Ⅰ)當(dāng)∥平面時(shí),確定點(diǎn)在棱上的位置;
(Ⅱ)在(Ⅰ)的條件下,求二面角的余弦值.
解:(Ⅰ)在梯形中,由,,得,
∴.又,故為等腰直角三角形.
∴.
連接,交于點(diǎn),則
∥平面,又平面,∴.
在中,,
即時(shí),∥平面. 6分
(Ⅱ)方法一:在等腰直角中,取中點(diǎn),連結(jié),則.∵平面⊥平面,且平面平面=,∴平面.
在平面內(nèi),過作直線于,連結(jié),由、,得平面,故.∴就是二面角的平面角.
在中,設(shè),則,
,,
,
由,可知:∽,∴,
代入解得:.
在中,,∴,
.
∴二面角的余弦值為. 12分
方法二:以為原點(diǎn),所在直線分別為軸、軸,如圖建立空間直角坐標(biāo)系.
設(shè),則,,,,.
設(shè)為平面的一個(gè)法向量,則,,∴,解得,∴.
設(shè)為平面的一個(gè)法向量,則,,
又,,∴,解得
∴.
∴二面角的余弦值為. 12分
【解析】略
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
39 |
3 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2011屆河北省邯鄲一中高三高考?jí)狠S模擬考試文數(shù) 題型:解答題
(本小題12分)如圖,四棱錐中,
側(cè)面是邊長(zhǎng)為2的正三角形,且與底面垂直,底面是的菱形,為的中點(diǎn).
(1)求與底面所成角的大小;
(2)求證:平面;
(3)求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2014屆安徽省高三上學(xué)期第一次聯(lián)考理科數(shù)學(xué)試卷(解析版) 題型:解答題
如圖,四棱錐中,側(cè)面是等邊三角形,在底面等腰梯形中,,,,,為的中點(diǎn),為的中點(diǎn),.
(1)求證:平面平面;
(2)求證:平面.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2012-2013學(xué)年浙江省高三12月月考文科數(shù)學(xué)試卷(解析版) 題型:解答題
(本小題滿分14分)如圖,四棱錐中,平面,四邊形是矩形,,分別是,的中點(diǎn).若,。
(1)求證:平面;
(2)求直線平面所成角的正弦值。
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com