已知數(shù)列是首項為1,公差為2的等差數(shù)列,數(shù)列的前n項和
(I)求數(shù)列的通項公式;
(II)設, 求數(shù)列的前n項和
(Ⅰ).(Ⅱ)由(Ⅰ)

試題分析:(Ⅰ)根據(jù).得到
從而通過確定,當時,,驗證也適合上式,得到所求通項公式.
(Ⅱ)利用“裂項相消法”求和.難度不大,對基礎知識的考查較為全面.
試題解析:(Ⅰ)由已知,.            2分
所以.從而
時,,
也適合上式,所以.                   6分
(Ⅱ)由(Ⅰ),      8分
所以
.                            12分
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:解答題

已知公差不為0的等差數(shù)列的前n項和為,且成等比數(shù)列.
(1)求數(shù)列的通項公式;
(2)設,求數(shù)列的前n項和.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

設公比大于零的等比數(shù)列的前項和為,且,數(shù)列的前項和為,滿足,
(Ⅰ)求數(shù)列的通項公式;
(Ⅱ)滿足對所有的均成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

設數(shù)列的前項和為,且.
(1)證明:數(shù)列是等比數(shù)列;
(2)若數(shù)列滿足,求數(shù)列的前項和為

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

設集合W是滿足下列兩個條件的無窮數(shù)列的集合:①對任意,恒成立;②對任意,存在與n無關的常數(shù)M,使恒成立.
(1)若是等差數(shù)列,是其前n項和,且試探究數(shù)列與集合W之間的關系;
(2)設數(shù)列的通項公式為,且,求M的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知直線的方程為,數(shù)列滿足,其前項和為,點在直線上.
(1)求數(shù)列的通項公式;
(2)在之間插入個數(shù),使這個數(shù)組成公差為的等差數(shù)列,令,試證明.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

在等差數(shù)列中,中若,為前項之和,且,則為最小時的的值為        .

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

已知等比數(shù)列的各項都是正數(shù),且成等差數(shù)列,=        

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

在數(shù)列中,,則          .

查看答案和解析>>

同步練習冊答案