若a>0,b>0,滿足ab≥1+a+b,那么( 。
A、a+b有最小值2+2
2
B、a+b有最大值(
2
+1)2
C、ab有最大值
2
+1
D、ab有最小值2+2
2
分析:先根據(jù)均值不等式可知
1
4
(a+b )(a+b )≥ab代入題設(shè)不等式中獲得關(guān)于a+b 的不等式,進(jìn)而解不等式求得a+b的最小值.
解答:解:∵a>0 b>0
∴a+b≥2
ab
,即
1
2
(a+b )≥
ab

1
4
(a+b )(a+b )≥ab
又∵ab≥1+a+b,
1
4
(a+b )(a+b )≥1+a+b
令 (a+b )=t>0
因?yàn)椋╝>0,b>0 )
t2
4
≥1+t,解得t≥2+2
2

故a+b有最小值2+2
2

故選A
點(diǎn)評(píng):本題主要考查了基本不等式的運(yùn)用.考查了學(xué)生對(duì)均值不等式的理解和靈活運(yùn)用.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)甲乙兩人進(jìn)行圍棋比賽,約定每局勝者得1分,負(fù)者得0分(無平局),比賽進(jìn)行到有一人比對(duì)方多2分或打滿6局時(shí)停止.設(shè)甲在每局中獲勝的概率為p(p>
1
2
)
,且各局勝負(fù)相互獨(dú)立.已知第二局比賽結(jié)束時(shí)比賽停止的概率為
5
9

(Ⅰ)若右圖為統(tǒng)計(jì)這次比賽的局?jǐn)?shù)n和甲、乙的總得分?jǐn)?shù)S、T的程序框圖.其中如果甲獲勝,輸入a=1,b=0;如果乙獲勝,則輸入a=0,b=1.請(qǐng)問在第一、第二兩個(gè)判斷框中應(yīng)分別填寫什么條件?
(Ⅱ)求p的值;
(Ⅲ)設(shè)ξ表示比賽停止時(shí)已比賽的局?jǐn)?shù),求隨機(jī)變量ξ的分布列和數(shù)學(xué)期望Eξ.
注:“n=0”,即為“n←0”或?yàn)椤皀:=0”.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

甲乙兩人進(jìn)行圍棋比賽行約定每局勝者得1分,負(fù)者得0分,比賽進(jìn)行到有一人比對(duì)方多2分或打滿6局時(shí)停止.設(shè)甲在每局中獲勝的概率為P(P
1
2
),且各局勝負(fù)相互獨(dú)立.已知第二局比賽結(jié)束時(shí)比賽停止的概率為
5
9
.若圖為統(tǒng)計(jì)這次比賽的局?jǐn)?shù)n和甲、乙的總得分?jǐn)?shù)S、T的程序框圖.其中如果甲獲勝,輸入a=1,b=0;如果乙獲勝,則輸入a=0,b=1.
(Ⅰ)在圖中,第一、第二兩個(gè)判斷框應(yīng)分別填寫什么條件?
(Ⅱ)求P的值;
(Ⅲ)求比賽到第4局時(shí)停止的概率P4,以及比賽到第6局時(shí)停止的概率p6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某商場在國慶促銷期間規(guī)定,商場內(nèi)所有商品按標(biāo)價(jià)的80%出售;同時(shí),當(dāng)顧客在該商場內(nèi)消費(fèi)滿一定金額后,按如下方案獲得相應(yīng)金額的獎(jiǎng)券:
消費(fèi)金額(元)的范圍 [200,400) [400,500) [500,700) [700,900 )
獲得獎(jiǎng)券的金額(元) 30 60 100 130
根據(jù)上述促銷方法,顧客在該商場購物可以獲得雙重優(yōu)惠,例如,購買標(biāo)價(jià)為400元的商品,則消費(fèi)金額為320元,獲得的優(yōu)惠額為:400×0.2+30=110(元).若顧客購買一件標(biāo)價(jià)為1000元的商品,則所能得到的優(yōu)惠額為(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•遼寧一模)甲乙兩人進(jìn)行乒乓球?qū)官,約定每局勝者得1分,負(fù)者得0分,比賽進(jìn)行到有一個(gè)比對(duì)方多2分或打滿6局時(shí)停止.設(shè)甲在每局中獲勝的概率為P(P>
1
2
)
,且各局勝負(fù)相互獨(dú)立.已知第二局比賽結(jié)束時(shí)比賽停止的概率為
5
9
.若圖為統(tǒng)計(jì)這次比賽的局?jǐn)?shù)n和甲,乙的總得分?jǐn)?shù)S,T的程序框圖.其中如果甲獲勝則輸入a=1,b=0.如果乙獲勝,則輸入a=0,b=1.
(1)在圖中,第一,第二兩個(gè)判斷框應(yīng)分別填寫什么條件?
(2)求P的值.
(3)設(shè)ξ表示比賽停止時(shí)已比賽的局?jǐn)?shù),求隨機(jī)變量ξ的分布列和數(shù)學(xué)期望Eξ.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2011•許昌三模)甲乙兩人進(jìn)行圍棋比賽,約定每局勝者得1分,負(fù)者得0分.比賽進(jìn)行到有一人比對(duì)方多2分或打滿6局時(shí)停止,設(shè)甲在每局中獲勝的概率為p(p>
1
2
)
,且各局勝負(fù)相互獨(dú)立,已知第二局比賽結(jié)束時(shí)比賽停止的概率為
5
9
,若右圖為統(tǒng)計(jì)這次比賽的局?jǐn)?shù)和甲乙的總得分?jǐn)?shù)S,T的程序框圖,其中如果甲獲勝,輸入a=1,b=0;如果乙獲勝,則輸入a=0,b=1.
(I)求p的值;
(Ⅱ)設(shè)ξ表示比賽停止時(shí)已比賽的局?jǐn)?shù),求隨機(jī)變量ξ的分布列數(shù)學(xué)望Eξ.

查看答案和解析>>

同步練習(xí)冊(cè)答案