分析:(I)根據(jù)數(shù)列{a
n+1+λa
n}是等比數(shù)列,建立等式關(guān)系,化簡整理得
λ=得λ=2或λ=-3,當(dāng)λ=2時,得a
n+1+2a
n=15•3
n-1①,當(dāng)λ=-3時,得a
n+1-3a
n=-10(-2)
n-1②,①-②可求出a
n;
(II)當(dāng)k為奇數(shù)時,作差變形得
+-=+-<0,從而得到結(jié)論;
(III)由(Ⅱ)知k為奇數(shù)時,
+<=+,討論n的奇偶,分別進行證明即可.
解答:解:(Ⅰ)∵數(shù)列{a
n+1+λa
n}是等比數(shù)列
∴
===(1+λ)應(yīng)為常數(shù)
∴
λ=得λ=2或λ=-3
當(dāng)λ=2時,可得{a
n+1+2a
n}為首項是a
2+2a
1=15,公比為3的等比數(shù)列,
則a
n+1+2a
n=15•3
n-1①
當(dāng)λ=-3時,{a
n+1-3a
n}為首項是a
2-3a
1=-10,公比為-2的等比數(shù)列,
∴a
n+1-3a
n=-10(-2)
n-1②
①-②得,a
n=3
n-(-2)
n(Ⅱ)當(dāng)k為奇數(shù)時,
+-=+-=
-7×6k+8×4k |
3k+1•(3k+2k)(3k+1-2k+1) |
=4k•[8-7•()k] |
3k+1(3k+2k)(3k+1-2k+1) |
<0∴
+<(Ⅲ)由(Ⅱ)知k為奇數(shù)時,
+<=+①當(dāng)n為偶數(shù)時,
++…+<++…+=(1-)<②當(dāng)n為奇數(shù)時,
++…+<++…++++…+=(1-)<.
點評:本題主要考查了等比數(shù)列,以及利用作差法比較大小和分類討論的思想,屬于中檔題.