)已知|a|=4,|b|=3,(2a-3b)·(2a+b)=61.
(1)求a與b的夾角θ;
(2)求|a+b|和|a-b|;
(1)θ=120°(2)|a+b|=·,|a-b|=
【解析】
試題分析:解 (1)由(2a-3b)·(2a+b)=61,得4|a|2-4a·b-3|b|2=61.∵|a|=4,|b|=3,代入上式求得a·b=-6,∴cosθ==-,又θ∈[0°,180°],∴θ=120°.
(2)可先平方轉(zhuǎn)化為向量的數(shù)量積.|a+b|2=(a+b)2=|a|2+2a·b+|b|2=42+2×(-6)+32=13,∴|a+b|=.同理,|a-b|==.
考點:向量的數(shù)量積
點評:主要是考查了向量的數(shù)量積的運用,求解模長的運用,屬于基礎(chǔ)題。
科目:高中數(shù)學(xué) 來源:2014屆吉林省長春市高一上學(xué)期期末考試文科數(shù)學(xué)試卷(解析版) 題型:解答題
已知|a|=4,|b|=3,(2a-3b)(2a+b)=61.
(1)求a與b的夾角;
(2)求|a+b|與|a-b|.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com