已知拋物線C的頂點在原點,焦點F在x軸正半軸上,設A、B是拋物線C上的兩個動點(AB不垂直于x軸),且|AF|+|BF|=8,線段AB的中垂線恒過定點Q(6,0),求此拋物線的方程.
分析:由拋物線的定義,知:|AF|+|BF|=x1+
p
2
+x2+
p
2
=x1+x2+p=8
,所以x1+x2=8-p.由點Q(6,0)在線段AB的垂直平分線上,知|QA|=|QB|,由此能求出拋物線的方程.
解答:解:由拋物線的定義可得:|AF|+|BF|=x1+
p
2
+x2+
p
2
=x1+x2+p=8

∴x1+x2=8-p.
∵點Q(6,0)在線段AB的垂直平分線上,
∴|QA|=|QB|即:(x1-6)2+y12=(x2-6)2+y22
又∵y12=2px1,y22=2px2
∴(x1-6)2+2px1=(x2-6)2+2px2,
整理得:(x1-x2)(x1+x2-12+2p)=0.
∵x1≠x2∴x1+x2-12+2p=0即:x1+x2=12-2p=8-p
解得:p=4,
∴拋物線的方程為y2=8x.
點評:本題主要考查直線與圓錐曲線的綜合應用能力,具體涉及到軌跡方程的求法及直線與拋物線的相關知識,解題時要注意合理地進行等價轉化.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

精英家教網已知拋物線C的頂點在原點,焦點為F(0,1).
(Ⅰ)求拋物線C的方程;
(Ⅱ)在拋物線C上是否存在點P,使得過點P的直線交C于另一點Q,滿足PF⊥QF,且PQ與C在點P處的切線垂直?若存在,求出點P的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2010•溫州一模)已知拋物線C的頂點在原點,焦點為F(0,1),且過點A(2,t),
(I)求t的值;
(II)若點P、Q是拋物線C上兩動點,且直線AP與AQ的斜率互為相反數(shù),試問直線PQ的斜率是否為定值,若是,求出這個值;若不是,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知拋物線C的頂點在原點,焦點為F(
1
2
,0)
.(1)求拋物線C的方程; (2)已知直線y=k(x+
1
2
)
與拋物線C交于A、B 兩點,且|FA|=2|FB|,求k 的值; (3)設點P 是拋物線C上的動點,點R、N 在y 軸上,圓(x-1)2+y2=1 內切于△PRN,求△PRN 的面積最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知拋物線C的頂點在坐標原點,焦點F(1,0).
(Ⅰ)求拋物線C的方程;
(Ⅱ)命題:“過拋物線C的焦點F作與x軸不垂直的任意直線l交拋物線于A、B兩點,線段AB的垂直平分線交x軸于點M,則
|AB||FM|
為定值,且定值是2”.判斷它是真命題還是假命題,并說明理;
(Ⅲ)試推廣(Ⅱ)中的命題,寫出關于拋物線的一般性命題(注,不必證明).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知拋物線C的頂點在坐標原點,以坐標軸為對稱軸,且焦點F(2,0).
(1)求拋物線C的標準方程;
(2)直線l過焦點F與拋物線C相交與M,N兩點,且|MN|=16,求直線l的傾斜角.

查看答案和解析>>

同步練習冊答案