集合A={x|x2-x-2≥0},集合B={x|-2<x<1},則A∩B=(  )
A、{x|-2<x<-1}
B、{x|-2<x≤-1}
C、{x|-2<x<2}
D、∅
考點(diǎn):交集及其運(yùn)算
專題:集合
分析:利用不等式性質(zhì)和交集定義求解.
解答: 解:∵集合A={x|x2-x-2≥0}={x|x≥2或x≤-1},
集合B={x|-2<x<1},
∴A∩B={x|-2<x≤-1}.
故選:B.
點(diǎn)評:本題考查交集的求法,是基礎(chǔ)題,解題時(shí)要認(rèn)真審題,注意不等式性質(zhì)的合理運(yùn)用.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=|
1
3
x+a}|滿足f(3-x)=f(x),則a的值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=loga
1
ax
-1)(a>0,a≠1).
(1)求函數(shù)f(x)的定義域;
(2)討論函數(shù)f(x)的單調(diào)性(不需證明).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

復(fù)數(shù)z=
5i
(2-i)(2+i)
(i是虛數(shù)單位)的共軛復(fù)數(shù)為(  )
A、-
5
3
i
B、
5
3
i
C、-i
D、i

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)y=ln(
1
x
-1)的定義域?yàn)椋ā 。?/div>
A、(0,1)
B、(1,+∞)
C、(-∞,0)∪(1,+∞)
D、(-∞,1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

命題“?x∈R,cosx≤
1
2
”的否定是(  )
A、?x∈R,cosx≥
1
2
B、?x∈R,cosx>
1
2
C、?∈R,cosx≥
1
2
D、?x∈R,cosx>
1
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)Sn為數(shù)列{an}的前n項(xiàng)和,已知2an-2n=Sn
(1)證明:{an-n•2n-1}是等比數(shù)列;
(2)令Tn=S1+S2+…+Sn,求Tn的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知p:x2≤x,q:x2-(2a+1)x+a(a+1)≥0.若q是p的必要不充分條件,求實(shí)數(shù)a是取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知a為實(shí)數(shù),f(x)=(x2-4)(x-
1
2

(1)求倒數(shù)f′(x);
(2)求f(x)在[-2,2]上的最大值和最小值.

查看答案和解析>>

同步練習(xí)冊答案