直線與拋物線所圍成封閉圖形的面積是(     )
A.B.C.D.
C

試題分析:聯(lián)立直線與拋物線解析式,得:,設直線與拋物線所圍成圖形的面積為S,所以。
點評:此題考查了定積分的運算及數(shù)形結(jié)合的思想,熟練掌握利用定積分表示封閉圖形的面積是解本題的關(guān)鍵.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分12分)
已知直線經(jīng)過拋物線的焦點,且與拋物線交于兩點,點為坐標原點.

(Ⅰ)證明:為鈍角.
(Ⅱ)若的面積為,求直線的方程;

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題12分)已知拋物線C:過點A
(1)求拋物線C 的方程;
(2)直線過定點,斜率為,當取何值時,直線與拋物線C只有一個公共點。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知拋物線,過軸上一點的直線與拋物線交于點兩點。
證明,存在唯一一點,使得為常數(shù),并確定點的坐標。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

當a為任意實數(shù)時,直線恒過定點P,則過點P的拋物線的標準方程是(   )
A.B.
C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分13分)已知拋物線上一動點,拋物線內(nèi)一點,為焦點且的最小值為
求拋物線方程以及使得|PA|+|PF|最小時的P點坐標;
過(1)中的P點作兩條互相垂直的直線與拋物線分別交于C、D兩點,直線CD是否過一定點? 若是,求出該定點坐標; 若不是,請說明理由。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

拋物線y2=4x的焦點到準線的距離是________.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

某拋物線形拱橋跨度是20米,拱高4米,在建橋時每隔4米需用一支柱支撐,求其中最長的支柱的長.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

焦點為的拋物線的標準方程為               (  )
A.B.C.D.

查看答案和解析>>

同步練習冊答案