【題目】已知函數(shù).
(1)若函數(shù)存在與直線平行的切線,求實數(shù)的取值范圍;
(2)設,若有極大值點,求證: .
【答案】(1); (2)詳見解析.
【解析】試題分析:
(1)本題考查導數(shù)的幾何意義,求出導函數(shù),由題意方程在上有實根,利用二次方程根的分布知識可求得的范圍;
(2)由題意可知是的兩根,從而有,分析知極大值點滿足,于是都可用表示,也即不等式中三個參數(shù)可化為關(guān)于一個參數(shù)的不等式,這樣下面可利用導數(shù)研究相應函數(shù)的性質(zhì)證明出題設不等式.注意范圍.
解析:
(1)因為,因為函數(shù)存在與直線平行的切線,所以在上有解,即在上有解,也即在上有解,所以,得,故所求實數(shù)的取值范圍是.
(2)因為,因為,
①當時,單調(diào)遞增無極值點,不符合題意.
②當或時,令,設的兩根為和,因為為函數(shù)的極大值點,所以,又,所以,所以,則,要證明,只需要證明因為,,令,,所以,記,,則,當時,,當時,,所以,所以,所以在上單調(diào)遞減,所以,原題得證.
科目:高中數(shù)學 來源: 題型:
【題目】如圖所示,在四棱錐中,底面是邊長為2的正方形,側(cè)面為正三角形,且面面, 分別為棱的中點.
(1)求證: 平面;
(2)(文科)求三棱錐的體積;
(理科)求二面角的正切值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,已知矩形四點坐標為A(0,-2),C(4,2),B(4,-2),D(0,2).
(1)求對角線所在直線的方程;
(2)求矩形外接圓的方程;
(3)若動點為外接圓上一點,點為定點,問線段PN中點的軌跡是什么,并求出該軌跡方程。
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】△ABC的內(nèi)角A,B,C所對的邊分別為a,b,c.已知 bcosA=asinB. (Ⅰ)求A;
(Ⅱ)若a= ,b=2,求△ABC的面積.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設Sn是數(shù)列{an}的前n項和. (Ⅰ)若2Sn=3n+3.求{an}的通項公式;
(Ⅱ)若a1=1,an+1﹣an=2n(n∈N*),求Sn .
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知圓: 經(jīng)過橢圓: 的左右焦點,且與橢圓在第一象限的交點為,且三點共線,直線交橢圓于, 兩點,且().
(1)求橢圓的方程;
(2)當三角形的面積取得最大值時,求直線的方程.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知各項均為正數(shù)的等比數(shù)列{an}中,a2=4,a4=16.
(1)求公比q;
(2)若a3 , a5分別為等差數(shù)列{bn}的第3項和第5項,求數(shù)列{bn}的通項公式.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在邊長為2的正方體中,M是棱CC1的中點.
(1)求B到面的距離;
(2)求BC與面所成角的正切值;
(3)求面與面ABCD所成的銳二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知a<0,函數(shù)f(x)=acosx+ + ,其中x∈[﹣ , ].
(1)設t= + ,求t的取值范圍,并把f(x)表示為t的函數(shù)g(t);
(2)求函數(shù)f(x)的最大值(可以用a表示);
(3)若對區(qū)間[﹣ , ]內(nèi)的任意x1 , x2 , 總有|f(x1)﹣f(x2)|≤1,求實數(shù)a的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com