已知點(diǎn)A(0,0),B(
3
,0)
,C(0,1).設(shè)AD⊥BC于D,那么有
CD
CB
,其中λ=
 
分析:由A,B,C三點(diǎn)的坐標(biāo),及AD⊥BC于D,由射影定理我們不難求出線段CD,與CB的長度,由圖分析,向量
CD
CB
同向,故λ>0;綜合可得答案.
解答:精英家教網(wǎng)解:已知如圖,A、B、C、D四點(diǎn)坐標(biāo)如下圖示:
由射影定理,可得:CD=
1
2
,CB=2
CD
CB
同向
CD
=
1
4
CB

故λ=
1
4

故答案為:
1
4
點(diǎn)評:若向量
a
與非零向量
b
滿足,
a
b
,則:
當(dāng)λ>0時(shí),向量
a
與微量
b
同向,且λ=
|
a
|
|
b
|
,
當(dāng)λ=0時(shí),向量
a
=
0
,
當(dāng)λ<0時(shí),向量
a
與微量
b
反向,且λ=-
|
a
|
|
b
|
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)本題包括A、B、C、D四小題,請選定其中兩題,并在相應(yīng)的答題區(qū)域內(nèi)作答.若多做,則按作答的前兩題評分.解答時(shí)應(yīng)寫出文字說明、證明過程或演算步驟.
A:AB是圓O的直徑,D為圓O上一點(diǎn),過D作圓O的切線交AB延長線于點(diǎn)C,若DA=DC,求證:AB=2BC.
B:在平面直角坐標(biāo)系xOy中,已知點(diǎn)A(0,0),B(-2,0),C(-2,1).設(shè)k為非零實(shí)數(shù),矩陣M=
k0
01
,N=
01
10
,點(diǎn)A、B、C在矩陣MN對應(yīng)的變換下得到點(diǎn)分別為A1、B1、C1,△A1B1C1的面積是△ABC面積的2倍,求k的值.
C:在極坐標(biāo)系中,已知圓ρ=2cosθ與直線3ρcosθ+4ρsinθ+a=0相切,求實(shí)數(shù)a的值.
D:設(shè)a、b是非負(fù)實(shí)數(shù),求證:a3+b3
ab
(a2+b2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(1)選修4-2:矩陣與變換
在平面直角坐標(biāo)系xOy中,已知點(diǎn)A(0,0),B(-2,0),C(-2,1).設(shè)k為非零實(shí)數(shù),矩陣M=
k0
01
,N=
01
10
,點(diǎn)A、B、C在矩陣MN對應(yīng)的變換下得到點(diǎn)分別為A1、B1、C1,△A1B1C1的面積是△ABC面積的2倍,求k的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在平面直角坐標(biāo)系xOy中,已知點(diǎn)A(0,0),B(-2,0),C(-2,1).設(shè)k為非零實(shí)數(shù),矩陣M=
.
k0
01
.
,N=
.
01
10
.
,點(diǎn)A、B、C在矩陣MN對應(yīng)的變換下得到點(diǎn)分別為A1、B1、C1,△A1B1C1的面積是△ABC面積的2倍,
(1)求k的值.
(2)判斷變換MN是否可逆,如果可逆,求矩陣MN的逆矩陣;如不可逆,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在平面直角坐標(biāo)系xOy中,已知點(diǎn)A(0,2)、B(1,1),直線 l經(jīng)過點(diǎn)B且與線段OA相交.則直線 l傾斜角α的取值范圍是
[0,
π
4
]∪[
4
,π)
[0,
π
4
]∪[
4
,π)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知點(diǎn)A(-2,0),B(2,0),直線AG,BG相交于點(diǎn)G,且它們的斜率之積是-
14

(Ⅰ)求點(diǎn)G的軌跡Ω的方程;
(Ⅱ)圓x2+y2=4上有一個(gè)動(dòng)點(diǎn)P,且P在x軸的上方,點(diǎn)C(1,0),直線PA交(Ⅰ)中的軌跡Ω于D,連接PB,CD.設(shè)直線PB,CD的斜率存在且分別為k1,k2,若k1=λk2,求實(shí)數(shù)λ的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案