1.若a,b∈R,i是虛數(shù)單位,且a+(b-2)i=1+i,則a-b的值為( 。
A.-2B.-4C.2D.4

分析 利用復(fù)數(shù)相等即可得出.

解答 解:∵a+(b-2)i=1+i,∴a=1,b-2=1,
解得a=1,b=3.
則a-b=-2.
故選:A.

點評 本題考查了復(fù)數(shù)相等,考查推理能力與計算能力,屬于基礎(chǔ)題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:填空題

11.某研究機構(gòu)對高三學生的記憶力x和判斷力y進行統(tǒng)計分析,得到下表數(shù)據(jù)
x681012
y2356
(1)請根據(jù)上表提供的數(shù)據(jù),用最小二乘法求出y關(guān)于x的線性回歸方程$\stackrel{∧}{y}$=$\stackrel{∧}$x+$\stackrel{∧}{a}$;
(2)試根據(jù)(2)中求出的線性回歸方程,預(yù)測記憶力為9的同學的判斷力.
(相關(guān)公式:$\stackrel{∧}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}•\overline{y}}{\sum_{i=1}^{n}{x}_{i}^{2}-n{\overline{x}}^{2}}$,$\stackrel{∧}{a}$=$\overline{y}$-$\stackrel{∧}$x,參考數(shù)據(jù)$\sum_{i=1}^{4}$xiyi=158,$\sum_{i=1}^{4}$x${\;}_{i}^{2}$=344)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

12.已知三棱柱ABC-A1B1C1中,底面三角形ABC是直角三角形,四邊形A1ACC1和四邊形A1ABB1均為正方形,D,E,F(xiàn)分別是A1B1,C1C,BC的中點,AB=1.
(Ⅰ)證明:DF⊥平面ABE;
(Ⅱ)求三棱錐A1-ABE的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

9.在△ABC中,“A=$\frac{π}{4}$”是“sinA=$\frac{\sqrt{2}}{2}$”的( 。
A.充分非必要條件B.必要非充分條件
C.充分必要條件D.既非充分也非必要條件

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

16.已知關(guān)于x的不等式kx2-2x+6k<0;
(1)若不等式的解集為(2,3),求實數(shù)k的值;
(2)若k>0,且不等式對一切2<x<3都成立,求實數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

6.若函數(shù)y=log2(kx2-2kx+8)的定義域為一切實數(shù),則實數(shù)k的取值范圍為[0,8).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

13.已知a>0,設(shè)命題p:函數(shù)y=ax在R上單調(diào)遞減,q:設(shè)函數(shù)y=$\left\{\begin{array}{l}{2x-2a(x≥2a)}\\{2a,(x<2a)}\end{array}\right.$,函數(shù)y>1恒成立,若p∨q為假,p∧q為真,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

10.在如圖所示的流程圖中,若輸入值分別為a=20.7,b=(-0.7)2,c=log0.72,則輸出的數(shù)為( 。
A.aB.bC.cD.不確定

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

11.函數(shù)y=|x-1|的遞增區(qū)間是[1,+∞).

查看答案和解析>>

同步練習冊答案