【題目】m為何值時(shí),.

(1)有且僅有一個(gè)零點(diǎn);

(2)有兩個(gè)零點(diǎn)且均比-1大.

【答案】(1) m4m=-1. (2) m的取值范圍為(5,-1)

【解析】

本試題主要是考查了函數(shù)的零點(diǎn),利用方程的解得到零點(diǎn)的證明。

1f(x)x22mx3m4有且僅有一個(gè)零點(diǎn)方程f(x)0有兩個(gè)相等實(shí)根Δ0,解得。

2)設(shè)f(x)的兩個(gè)零點(diǎn)分別為x1,x2,

x1x2=-2mx1·x23m4.

利用韋達(dá)定理和判別式得到范圍。

(1)f(x)x22mx3m4有且僅有一個(gè)零點(diǎn)方程f(x)0有兩個(gè)相等實(shí)根Δ0,即4m24(3m4)0,即m23m40,

∴m4m=-1. ……………… 5

(2)設(shè)f(x)的兩個(gè)零點(diǎn)分別為x1x2,

x1x2=-2m,x1·x23m4.

由題意,在

5m<-1.m的取值范圍為(5,-1)………………12

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四棱錐P-ABCD中,PA⊥底面ABCD,底面ABCD為梯形,AD∥BC,CD⊥BC,AD=2,AB=BC=3,PA=4,M為AD的中點(diǎn),N為PC上一點(diǎn),且PC=3PN.

(1)求證:MN∥平面PAB;

(2)求二面角PANM的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】過(guò)圓上的點(diǎn)作圓的切線過(guò)點(diǎn)作切線的垂線,若直線過(guò)拋物線的焦點(diǎn).

(1)求直線與拋物線的方程;

2若直線與拋物線交于點(diǎn),點(diǎn)在拋物線的準(zhǔn)線上,,的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在某親子游戲結(jié)束時(shí)有一項(xiàng)抽獎(jiǎng)活動(dòng),抽獎(jiǎng)規(guī)則是:盒子里面共有4個(gè)小球,小球上分別寫(xiě)有0,1,2,3的數(shù)字,小球除數(shù)字外其它完全相同,每對(duì)親子中,家長(zhǎng)先從盒子中取出一個(gè)小球,記下數(shù)字后將小球放回,孩子再?gòu)暮凶又腥〕鲆粋(gè)小球,記下小球上數(shù)字將小球放回.①若取出的兩個(gè)小球上數(shù)字之積大于4,則獎(jiǎng)勵(lì)飛機(jī)玩具一個(gè);②若取出的兩個(gè)小球上數(shù)字之積在區(qū)間上,則獎(jiǎng)勵(lì)汽車玩具一個(gè);③若取出的兩個(gè)小球上數(shù)字之積小于1,則獎(jiǎng)勵(lì)飲料一瓶.

(1)求每對(duì)親子獲得飛機(jī)玩具的概率;

(2)試比較每對(duì)親子獲得汽車玩具與獲得飲料的概率,哪個(gè)更大?請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某公司試銷一種成本單價(jià)為500元的新產(chǎn)品,規(guī)定試銷時(shí)銷售單價(jià)不低于成本單價(jià),又不高于800元.經(jīng)試銷調(diào)查,發(fā)現(xiàn)銷售量y()與銷售單價(jià)x()之間的關(guān)系可近似看作一次函數(shù)ykxb(k≠0),函數(shù)圖象如圖所示.

(1)根據(jù)圖象,求一次函數(shù)ykxb(k≠0)的表達(dá)式;

(2)設(shè)公司獲得的毛利潤(rùn)(毛利潤(rùn)=銷售總價(jià)-成本總價(jià))S元.試問(wèn)銷售單價(jià)定為多少時(shí),該公司可獲得最大毛利潤(rùn)?最大毛利潤(rùn)是多少?此時(shí)的銷售量是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)函數(shù)給出下列四個(gè)命題:

①c = 0時(shí),是奇函數(shù);時(shí),方程只有一個(gè)實(shí)根;

的圖象關(guān)于點(diǎn)(0 , c)對(duì)稱; ④方程至多3個(gè)實(shí)根.

其中正確的命題個(gè)數(shù)是(

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓的離心率為,其左焦點(diǎn)與拋物線的焦點(diǎn)重合.

(1)求橢圓的方程;

(2)過(guò)動(dòng)點(diǎn)的直線交軸于點(diǎn),交橢圓于點(diǎn),在第一象限,,過(guò)點(diǎn)軸的垂線交橢圓于點(diǎn),連接并延長(zhǎng)交橢圓于另一點(diǎn).設(shè)直線的斜率分別為,證明:為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)上的奇函數(shù).

(1)求的值;

(2)證明上單調(diào)遞減;

(3)若對(duì)任意的,不等式恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知空間幾何體中, 均為邊長(zhǎng)為2的等邊三角形, 為腰長(zhǎng)為3的等腰三角形,平面平面,平面平面

(1)試在平面內(nèi)作一條直線,使得直線上任意一點(diǎn)的連線均與平面平行,并給出詳細(xì)證明;

(2)求三棱錐的體積.

查看答案和解析>>

同步練習(xí)冊(cè)答案