已知雙曲線y2-
x2
3
=1的兩個焦點為F1、F2,若A、B分別為漸近線l1、l2上的點,且2|AB|=5|F1F2|.求線段AB的中點M的軌跡方程,并說明是什么曲線?
考點:軌跡方程
專題:計算題,圓錐曲線的定義、性質(zhì)與方程
分析:設A(x1,y1),B(x2,y2),AB的中點M(x,y),利用2|AB|=5|F1F2|,建立方程,根據(jù)A、B分別為l1、l2上的點,化簡可得軌跡方程及對應的曲線.
解答: 解:設A(x1,y1),B(x2,y2),AB的中點M(x,y)
∵2|AB|=5|F1F2|,∴|AB|=
5
2
|F1F2|=10,∴
(x1-x2)2+(y1-y2)2
=10
∵y1=
3
3
x1,y2=-
3
3
x2,2x=x1+x2,2y=y1+y2
∴y1+y2=
3
3
(x1-x2),y1-y2=
3
3
(x1+x2),
3×(2y)2+
1
3
×(2x)2
=100
x2
75
+
3y2
25
=1
,對應的曲線為橢圓.
點評:本題考查軌跡方程的求解,考查雙曲線的幾何性質(zhì),考查學生的計算能力,屬于中檔題.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

若直線y=3x+1是曲線y=ax2的切線,求a的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知拋物線y2=4x內(nèi)一定點E(m,0),(m>0),過點E作斜率分別為k1,k2的兩條直線,交拋物線于A、B和C、D,且M,N分別是線段AB、CD的中點.
(1)若m=1,k1=
3
時,求弦|AB|的長度;
(2)若k1+k2=1,判斷直線MN是否過定點?并說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知0<β<
π
2
<α<
4
,cosα(
π
4
-α)=
3
5
,sin(
4
+β)=
5
13
,求cos(α+β)的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖所示,圓O的直徑為BD,過圓上一點A作圓O的切線AE,過點D作DE⊥AE于點E,延長ED與圓O交于點C.
(1)證明:DA平分∠BDE;
(2)若AB=4,AE=2,求CD的長.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

函數(shù)f(x)=
x2+1
x2-1
的值域為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

以下命題正確的個數(shù)為
 

①因為數(shù)列可以看出函數(shù),所以每個數(shù)列均有通項公式;
②引入向量坐標的理論依據(jù)是平面向量的分解定理;
③由于矩陣與行列式都用行與列的形式呈現(xiàn)數(shù)據(jù),因此兩者本質(zhì)上沒區(qū)別;
④確定一條直線的基本要素是點和方向,兩者缺一不可;
⑤過點P(x0,y0)且與向量
d
=(u,v)
平行的直線方程是
x-x0
u
=
y-y0
v

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

本題滿分某種零件按質(zhì)量標準分為五個等級.現(xiàn)從一批該零件中隨機抽取20個,對其等級進行統(tǒng)計分析,得到頻率分布表如下:
等級
頻率0.050.35m0.350.10
(Ⅰ)求m;
(Ⅱ)從等級為三和五的所有零件中,任意抽取2個,求抽取的2個零件等級恰好相同的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

隨機變量X的分布列為P(X=k)=a•(
1
3
k(k=1,2,3),則E(X)的值為
 

查看答案和解析>>

同步練習冊答案