在F(x)中,已知內(nèi)角A、B、C所對(duì)的邊分別為a、b、c,向量
m
=(2sinB,-
3
)
n
=(cos2B,2cos2
B
2
-1)
,且
m
n

(I)求銳角B的大;
(II)如果b=2,求F(x)的面積S△ABC的最大值.
分析:(I)由向量平行的坐標(biāo)表示可得,2sinB×(2cos2
B
2
-1)-(-
3
)×cos2B=0
,整理可得
2sin(2B+
π
3
)=0
結(jié)合已經(jīng)知道0<B<
π
2
可求B
(II);利用余弦定理可得4=a2+c2-ac,利用基本不等式可得ac≤4,代入面積公式S△ABC=
1
2
acsinB
可求
解答:解:(I)
m
n

由向量平行的坐標(biāo)表示可得,由向量平行的坐標(biāo)表示可得,2sinB×(2cos2
B
2
-1)-(-
3
)×cos2B=0

即2sinBcosB+
3
cos2B=0
∴sin2B+
3
cos2B=0
2sin(2B+
π
3
)=0

∵0<B<
π
2

∴B=
π
3

(II)∵b=2,B=60°
由余弦定理可得,4=b2=a2+c2-2ac×
1
2
=a2+c2-ac≥ac
∴ac≤4
∴S△ABC=
1
2
acsinB=
3
4
ac≤
3

三角形的面積最大值為
3
點(diǎn)評(píng):本題主要考查了向量平行的坐標(biāo)表示,輔助角公式,由三角函數(shù)值班求角,余弦定理及基本不等式,三角形的面積公式等知識(shí)的綜合運(yùn)用.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

在平面直角坐標(biāo)系xOy中,已知直線l:2
2
x-y+3+8
2
=0
和圓C1:x2+y2+8x+F=0.若直線l被圓C1截得的弦長為2
3

(1)求圓C1的方程;
(2)設(shè)圓C1和x軸相交于A、B兩點(diǎn),點(diǎn)P為圓C1上不同于A、B的任意一點(diǎn),直線PA、PB交y軸于M、N點(diǎn).當(dāng)點(diǎn)P變化時(shí),以MN為直徑的圓C2是否經(jīng)過圓C1內(nèi)一定點(diǎn)?請(qǐng)證明你的結(jié)論;
(3)若△RST的頂點(diǎn)R在直線x=-1上,S、T在圓C1上,且直線RS過圓心C1,∠SRT=30°,求點(diǎn)R的縱坐標(biāo)的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

在平面直角坐標(biāo)系xOy中,已知直線l:2
2
x-y+3+8
2
=0
和圓C1:x2+y2+8x+F=0.若直線l被圓C1截得的弦長為2
3

(1)求圓C1的方程;
(2)設(shè)圓C1和x軸相交于A、B兩點(diǎn),點(diǎn)P為圓C1上不同于A、B的任意一點(diǎn),直線PA、PB交y軸于M、N點(diǎn).當(dāng)點(diǎn)P變化時(shí),以MN為直徑的圓C2是否經(jīng)過圓C1內(nèi)一定點(diǎn)?請(qǐng)證明你的結(jié)論;
(3)若△RST的頂點(diǎn)R在直線x=-1上,S、T在圓C1上,且直線RS過圓心C1,∠SRT=30°,求點(diǎn)R的縱坐標(biāo)的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2009-2010學(xué)年浙江省臺(tái)州市高一(下)期末數(shù)學(xué)試卷(解析版) 題型:解答題

在平面直角坐標(biāo)系xOy中,已知直線l:2x-y+3+8和圓C1:x2+y2+8x+F=0.若直線l被圓C1截得的弦長為2
(1)求圓C1的方程;
(2)設(shè)圓C1和x軸相交于A、B兩點(diǎn),點(diǎn)P為圓C1上不同于A、B的任意一點(diǎn),直線PA、PB交y軸于M、N點(diǎn).當(dāng)點(diǎn)P變化時(shí),以MN為直徑的圓C2是否經(jīng)過圓C1內(nèi)一定點(diǎn)?請(qǐng)證明你的結(jié)論;
(3)若△RST的頂點(diǎn)R在直線x=-1上,S、T在圓C1上,且直線RS過圓心C1,∠SRT=30°,求點(diǎn)R的縱坐標(biāo)的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010年江蘇省揚(yáng)州市期末數(shù)學(xué)復(fù)習(xí)試卷3(解析版) 題型:解答題

在平面直角坐標(biāo)系xOy中,已知直線l:2x-y+3+8和圓C1:x2+y2+8x+F=0.若直線l被圓C1截得的弦長為2
(1)求圓C1的方程;
(2)設(shè)圓C1和x軸相交于A、B兩點(diǎn),點(diǎn)P為圓C1上不同于A、B的任意一點(diǎn),直線PA、PB交y軸于M、N點(diǎn).當(dāng)點(diǎn)P變化時(shí),以MN為直徑的圓C2是否經(jīng)過圓C1內(nèi)一定點(diǎn)?請(qǐng)證明你的結(jié)論;
(3)若△RST的頂點(diǎn)R在直線x=-1上,S、T在圓C1上,且直線RS過圓心C1,∠SRT=30°,求點(diǎn)R的縱坐標(biāo)的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011年江蘇省南京市金陵中學(xué)高考數(shù)學(xué)預(yù)測(cè)試卷(1)(解析版) 題型:解答題

在平面直角坐標(biāo)系xOy中,已知直線l:2x-y+3+8和圓C1:x2+y2+8x+F=0.若直線l被圓C1截得的弦長為2
(1)求圓C1的方程;
(2)設(shè)圓C1和x軸相交于A、B兩點(diǎn),點(diǎn)P為圓C1上不同于A、B的任意一點(diǎn),直線PA、PB交y軸于M、N點(diǎn).當(dāng)點(diǎn)P變化時(shí),以MN為直徑的圓C2是否經(jīng)過圓C1內(nèi)一定點(diǎn)?請(qǐng)證明你的結(jié)論;
(3)若△RST的頂點(diǎn)R在直線x=-1上,S、T在圓C1上,且直線RS過圓心C1,∠SRT=30°,求點(diǎn)R的縱坐標(biāo)的范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案