(1)3人坐在有八個(gè)座位的一排上,若每人的左右兩邊都要有空位,則不同坐法的種數(shù)為幾種?
(2)有5個(gè)人并排站成一排,如果甲必須在乙的右邊,則不同的排法有多少種?
(3)現(xiàn)有10個(gè)保送上大學(xué)的名額,分配給7所學(xué)校,每校至少有1個(gè)名額,問名額分配的方法共有多少種?

解:(1)由題意知有5個(gè)座位都是空的,我們把3個(gè)人看成是坐在座位上的人,往5個(gè)空座的空檔插,
由于這5個(gè)空座位之間共有4個(gè)空,3個(gè)人去插,共有A43=24(種).
(2)∵總的排法數(shù)為A55=120(種),
∴甲在乙的右邊的排法數(shù)為A55=60(種).
(3)根據(jù)題意,將10個(gè)名額,分配給7所學(xué)校,每校至少有1個(gè)名額,
可以轉(zhuǎn)化為10個(gè)元素之間有9個(gè)間隔,要求分成7份,每份不空;
相當(dāng)于用6塊檔板插在9個(gè)間隔中,
共有C96=84種不同方法.
所以名額分配的方法共有84種.
分析:(1)根據(jù)題意,使用插空法,把3個(gè)人看成是坐在座位上的人,往5個(gè)空座的空檔插,由組合知識(shí),分析可得答案;
(2)使用倍分法,首先求得總的排法數(shù)為A55,分析可得其中甲在乙的右邊與甲在乙的左邊的情況數(shù)目應(yīng)該相等,進(jìn)而計(jì)算可得答案;
(3)分析題意,可將原問題轉(zhuǎn)化為10個(gè)元素之間有9個(gè)間隔,要求分成7份,每份不空,使用插空法,相當(dāng)于用6塊檔板插在9個(gè)間隔中,計(jì)算可得答案.
點(diǎn)評(píng):本題考查排列、組合的綜合運(yùn)用,要求學(xué)生會(huì)一些特殊方法的使用,如插空法、倍分法等;但首先應(yīng)該會(huì)轉(zhuǎn)化為對(duì)應(yīng)問題的模型.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(1)3人坐在有八個(gè)座位的一排上,若每人的左右兩邊都要有空位,則不同坐法的種數(shù)為幾種?
(2)有5個(gè)人并排站成一排,如果甲必須在乙的右邊,則不同的排法有多少種?
(3)現(xiàn)有10個(gè)保送上大學(xué)的名額,分配給7所學(xué)校,每校至少有1個(gè)名額,問名額分配的方法共有多少種?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:湖南省瀏陽一中2010-2011學(xué)年高二第一次階段性考試數(shù)學(xué)理科試題 題型:044

(1)3人坐在有八個(gè)座位的一排上,若每人的左右兩邊都要有空位,則不同坐法的種數(shù)為幾種?

(2)有5個(gè)人并排站成一排,如果甲必須在乙的右邊,則不同的排法有多少種?

(3)現(xiàn)有10個(gè)保送上大學(xué)的名額,分配給7所學(xué)校,每校至少有1個(gè)名額,問名額分配的方法共有多少種?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010-2011年遼寧省高二下學(xué)期第二次考試?yán)頂?shù) 題型:解答題

.(12分)

(1)人坐在有八個(gè)座位的一排上,若每人的左右兩邊都要有空位,則不同的坐法的種數(shù)為幾種?

    (2)甲、乙、丙人站在共有級(jí)的臺(tái)階上,若每級(jí)臺(tái)階最多站人,同一級(jí)臺(tái)階上

不區(qū)分站的位置,則有多少種不同的站法?

    (3)現(xiàn)有個(gè)保送大學(xué)的名額,分配給所學(xué)校,每校至少個(gè)名額,問名額分配的方法共有多少種?

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011年高三數(shù)學(xué)第一輪復(fù)習(xí)鞏固與練習(xí):排列、組合(解析版) 題型:解答題

(1)3人坐在有八個(gè)座位的一排上,若每人的左右兩邊都要有空位,則不同坐法的種數(shù)為幾種?
(2)有5個(gè)人并排站成一排,如果甲必須在乙的右邊,則不同的排法有多少種?
(3)現(xiàn)有10個(gè)保送上大學(xué)的名額,分配給7所學(xué)校,每校至少有1個(gè)名額,問名額分配的方法共有多少種?

查看答案和解析>>

同步練習(xí)冊(cè)答案