已知曲線的極坐標(biāo)方程為,以極點(diǎn)為原點(diǎn),極軸為軸的正半軸建立直角坐標(biāo)系,直線的參數(shù)方程
(Ⅰ)寫出直線的普通方程與曲線的直角坐標(biāo)方程;
(Ⅱ)設(shè)曲線經(jīng)過伸縮變換得到曲線,在曲線上求一點(diǎn),使點(diǎn)到直線的距離最小,并求出最小距離.
(1),
(2)
【解析】
試題分析:.解:(Ⅰ)由得,,
由得,圓.
(Ⅱ)設(shè)點(diǎn)是圓C上的任意一點(diǎn),經(jīng)過伸縮變換得到點(diǎn)
由得,把代入圓得,
所以曲線
令,則點(diǎn)到直線的距離
∴當(dāng)即時(shí),,此時(shí),
∴當(dāng)時(shí),點(diǎn)到直線的距離的最小值為.
考點(diǎn):點(diǎn)到直線的距離,參數(shù)方程與直角坐標(biāo)方程
點(diǎn)評(píng):主要是考查了參數(shù)方程與直角坐標(biāo)方程的互化,以及點(diǎn)到直線的距離公式的求解,屬于中檔題。
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
θ |
2 |
A、x2+(y+1)2=1 |
B、(x+1)2+y2=1 |
C、(x-1)2+y2=1 |
D、x2+(y-1)2=1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
(選修4—4:坐標(biāo)系與參數(shù)方程)已知曲線的極坐標(biāo)方程為,曲線的極坐標(biāo)方程為,曲線, 相交于,兩點(diǎn).(Ⅰ)把曲線,的極坐標(biāo)方程轉(zhuǎn)化為直角坐標(biāo)方程;(Ⅱ)求弦的長(zhǎng)度.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年遼寧沈陽(yáng)市高三教學(xué)質(zhì)量監(jiān)測(cè)(一)文科數(shù)學(xué)試卷(解析版) 題型:解答題
已知曲線的極坐標(biāo)方程為,曲線的極坐標(biāo)方程為,曲線、相交于、兩點(diǎn). ()
(Ⅰ)求、兩點(diǎn)的極坐標(biāo);
(Ⅱ)曲線與直線(為參數(shù))分別相交于兩點(diǎn),求線段的長(zhǎng)度.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年黑龍江省齊齊哈爾市高三二模文科數(shù)學(xué)試卷(解析版) 題型:解答題
已知極坐標(biāo)系的極點(diǎn)為直角坐標(biāo)系的原點(diǎn),極軸為x軸的正半軸,兩種坐標(biāo)系中的長(zhǎng)度單位相同,已知曲線的極坐標(biāo)方程為.
(1)求的直角坐標(biāo)方程;
(2)直線(為參數(shù))與曲線C交于,兩點(diǎn),與軸交于,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2013年海南省?谑懈呖寄M(二)文科數(shù)學(xué)試卷(解析版) 題型:解答題
已知曲線的極坐標(biāo)方程是,以極點(diǎn)為原點(diǎn),極軸為軸正方向建立平面直角坐標(biāo)系,直線的參數(shù)方程是:(為參數(shù)).
(Ⅰ)求曲線的直角坐標(biāo)方程;
(Ⅱ)設(shè)直線與曲線交于,兩點(diǎn),點(diǎn)的直角坐標(biāo)為,若,求直線的普通方程.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com