已知f(x)=數(shù)學(xué)公式,且方程f(x)=-4x+8有兩個(gè)不同的正根,其中一根是另一根的3倍,記等差數(shù)列{an}、{bn} 的前n項(xiàng)和分別為Sn,Tn數(shù)學(xué)公式(n∈N+).
(1)若g(n)=數(shù)學(xué)公式,求g(n)的最大值;
(2)若a1=數(shù)學(xué)公式,數(shù)列{bn}的公差為3,試問(wèn)在數(shù)列{an} 與{bn}中是否存在相等的項(xiàng),若存在,求出由這些相等項(xiàng)從小到大排列得到的數(shù)列{cn}的通項(xiàng)公式;若不存在,請(qǐng)說(shuō)明理由.
(3)若a1=數(shù)學(xué)公式,數(shù)列{bn}的公差為3,且dn=bn-(n-1),h(x)=數(shù)學(xué)公式.試證明:h(d1)•h(d2)…h(huán)(dn)<數(shù)學(xué)公式

解:(1)a=4,f(x)=,
=f(n)=
g(n)==
此函數(shù)是關(guān)于n的減函數(shù),
當(dāng)n=1時(shí)取得最大值,
故g(n)的最大值為g(1)=
(2)由(1)知,可得
an=4n-,bn=3n-2
令an=bm,4n-=3m-2可得:=3m-4n∈Z,矛盾
所以在數(shù)列{an} 與{bn}中不存在相等的項(xiàng).
(3)證明:∵h(yuǎn)(dn)=
∴要證h(d1)•h(d2)…h(huán)(dn)<
即要證××…×(直接用數(shù)學(xué)歸納法證明不出)
只要證明××…×(再用數(shù)學(xué)歸納法證明即可)
①當(dāng)n=1時(shí),××…×顯然成立,當(dāng)n=2時(shí),××…×成立;
②假設(shè)當(dāng)n=k(k≥2)時(shí)××…×成立,
當(dāng)n=k+1時(shí),為了要證明:××…×成立
只要證:
?3(2k+1)2≤(3k+1)[(2k+2)2-(2k+1)2]=(3k+1)(4k+3)
?12k2+12k+3≤12k2+13k+3?k≥0.
最后一個(gè)式子顯然成立,從而得出n=k+1時(shí)也成立.
由①②可得n∈N+時(shí),h(d1)•h(d2)…h(huán)(dn)<
分析:(1)a=4時(shí),f(x)=,從而有:=f(n)=,g(n)==結(jié)合函數(shù)的性質(zhì)即可得出g(n)的最大值.
(2)假若存在數(shù)列{an}中的第n項(xiàng)與數(shù)列{bn}中的第m項(xiàng)相等,即4n-=3m-2,進(jìn)一步分析可得矛盾矛盾,即可得結(jié)論.
(3)根據(jù)題意得h(dn)=,要證h(d1)•h(d2)…h(huán)(dn)<即要證××…×(直接用數(shù)學(xué)歸納法證明不出)只要證明××…×(再用數(shù)學(xué)歸納法證明即可).
點(diǎn)評(píng):本題主要考查數(shù)學(xué)歸納法與等差數(shù)列的有關(guān)性質(zhì),以及等差數(shù)列的通項(xiàng)公式、函數(shù)求最值等知識(shí)點(diǎn),屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知總體的各個(gè)體的值由小到大依次為2,3,4,7,a,b,12,13.7,17.3,20(a>0,b>0),且總體的中位數(shù)為10.5,若總體的方差最小時(shí),則函數(shù)f(x)=ax2+2bx+1的最小值是
-9.5
-9.5

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

下面四個(gè)命題:
①已知函數(shù)f(x)=
x
 ,x≥0 
-x
 ,x<0 
且f(a)+f(4)=4,那么a=-4;
②一組數(shù)據(jù)18,21,19,a,22的平均數(shù)是20,那么這組數(shù)據(jù)的方差是2;
③已知奇函數(shù)f(x)在(0,+∞)為增函數(shù),且f(-1)=0,則不等式f(x)<0的解集{x|x<-1};
④在極坐標(biāo)系中,圓ρ=-4cosθ的圓心的直角坐標(biāo)是(-2,0).
其中正確的是
②,④
②,④

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

下面四個(gè)命題:
①已知函數(shù)f(x)=
x
 ,x≥0 
-x
 ,x<0 
且f(a)+f(4)=4,那么a=-4;
②一組數(shù)據(jù)18,21,19,a,22的平均數(shù)是20,那么這組數(shù)據(jù)的方差是2;
③要得到函數(shù)y=sin(2x+
π
3
)
的圖象,只要將y=sin2x的圖象向左平移
π
3
單位;
④已知奇函數(shù)f(x)在(0,+∞)為增函數(shù),且f(-1)=0,則不等式f(x)<0的解集{x|x<-1}.
其中正確的是

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

下面四個(gè)命題:
①已知函數(shù)數(shù)學(xué)公式且f(a)+f(4)=4,那么a=-4;
②一組數(shù)據(jù)18,21,19,a,22的平均數(shù)是20,那么這組數(shù)據(jù)的方差是2;
③已知奇函數(shù)f(x)在(0,+∞)為增函數(shù),且f(-1)=0,則不等式f(x)<0的解集{x|x<-1};
④在極坐標(biāo)系中,圓ρ=-4cosθ的圓心的直角坐標(biāo)是(-2,0).
其中正確的是________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

下面四個(gè)命題:
①已知函數(shù)數(shù)學(xué)公式且f(a)+f(4)=4,那么a=-4;
②一組數(shù)據(jù)18,21,19,a,22的平均數(shù)是20,那么這組數(shù)據(jù)的方差是2;
③要得到函數(shù)數(shù)學(xué)公式的圖象,只要將y=sin2x的圖象向左平移數(shù)學(xué)公式單位;
④已知奇函數(shù)f(x)在(0,+∞)為增函數(shù),且f(-1)=0,則不等式f(x)<0的解集{x|x<-1}.
其中正確的是________.

查看答案和解析>>

同步練習(xí)冊(cè)答案