自然數(shù)1,2,3,…,n按照一定的順序排成一個(gè)數(shù)列:a1,a2a3,…,an,若滿(mǎn)足|a1-1|+|a2-2|+…+|an-n|≤4,則稱(chēng)數(shù)列a1,a2,…an為一個(gè)“優(yōu)數(shù)列”,當(dāng)n=6時(shí),這樣的“優(yōu)數(shù)列”共有

[  ]

A.24個(gè)

B.23個(gè)

C.18個(gè)

D.16個(gè)

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

科技周活動(dòng)中,數(shù)學(xué)老師展示出一個(gè)數(shù)字迷宮:將自然數(shù)1,2,3,4,…排成數(shù)陣,在2處轉(zhuǎn)第1個(gè)彎,在3處轉(zhuǎn)第2個(gè)彎,在5處轉(zhuǎn)第3個(gè)彎,…,則第100個(gè)彎處的數(shù)是
2551
2551

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

密碼的使用對(duì)現(xiàn)代社會(huì)是極其重要的.有一種密碼其明文和密文的字母按A、B、C…與26個(gè)自然數(shù)1,2,3,…依次對(duì)應(yīng).設(shè)明文的字母對(duì)應(yīng)的自然數(shù)為x,譯為密文的字母對(duì)應(yīng)的自然數(shù)為y.例如,有一種譯碼方法是按照以下的對(duì)應(yīng)法則實(shí)現(xiàn)的:x→y,其中y是3x+2被26除所得的余數(shù)與1之和(1≤x≤26).按照此對(duì)應(yīng)法則,明文A譯為了密文F,那么密文UI譯成明文為
FB
FB

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

將自然數(shù)1,2,3,4,…依次按1項(xiàng)、2項(xiàng)、3項(xiàng)、4項(xiàng),…分組為:(1),(2,3),(4,5,6),(7,8,9,10),…,每一組的和組成數(shù)列{bn},則b20=
4010
4010

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•東城區(qū)二模)對(duì)于數(shù)列{an} (n=1,2,…,m),令bk為a1,a2,…,ak中的最大值,稱(chēng)數(shù)列{bn}為{an}的“創(chuàng)新數(shù)列”.例如數(shù)列2,1,3,7,5的創(chuàng)新數(shù)列為2,2,3,7,7.定義數(shù)列{Cn}:c1,c2,c3,…,cm是自然數(shù)1,2,3,…,m(m>3)的一個(gè)排列.
(Ⅰ)當(dāng)m=5時(shí),寫(xiě)出創(chuàng)新數(shù)列為3,4,4,5,5的所有數(shù)列{Cn};
(Ⅱ)是否存在數(shù)列{Cn},使它的創(chuàng)新數(shù)列為等差數(shù)列?若存在,求出所有的數(shù)列{Cn},若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

對(duì)于正整數(shù)n,數(shù)列a1,a2,…,ak在滿(mǎn)足下列條件下稱(chēng)為關(guān)于(1,2,3,…,n)的萬(wàn)能數(shù)列:自然數(shù)1,2,3,…,n的任意一個(gè)排列都能從數(shù)列a1,a2,…,ak中去掉一些項(xiàng)后得到.
(1)構(gòu)造一個(gè)有n2項(xiàng)的關(guān)于(1,2,3,…,n)的萬(wàn)能數(shù)列的例子,并證明;
(2)構(gòu)造一個(gè)有n2-n+1個(gè)項(xiàng)的關(guān)于(1,2,3,…,n)的萬(wàn)能數(shù)列的例子并證明;
(3)判斷數(shù)列A:是否是關(guān)于(1,2,3,…,n)的萬(wàn)能數(shù)列,并證明你的結(jié)論.

查看答案和解析>>

同步練習(xí)冊(cè)答案