曲線f(x)=ln(2x-1)上的點(diǎn)到直線2x-y+3=0的最短距離是(    )

A. B.  2      C. 3      D.0

 

【答案】

A

【解析】略

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=ln(x+1)-ax+
1-a
x+1
a>
1
2
).
(Ⅰ)當(dāng)曲線y=f(x)在(1,f(1))處的切線與直線l:y=2x+1垂直時,求a的值;
(Ⅱ)求函數(shù)f(x)的單調(diào)區(qū)間.
(III)求證:
1
2
+
1
3
+
1
4
+…+
1
n+1
<ln(n+1)<1+
1
2
+
1
3
+…+
1
n
   (n∈N*)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=ln(x+1)-
x
x+1

(1)求f(x)的單調(diào)區(qū)間;
(2)求曲線y=f(x)在點(diǎn)(1,f(1))處的切線方程;
(3)求證:對任意的正數(shù)a與b,恒有lna-lnb≥1-
b
a

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=ln(ax+1)+
1-x1+x
(x≥0,a為正實(shí)數(shù)).
(Ⅰ)若a=1,求曲線y=f(x)在點(diǎn)(1,f(1))處的切線方程;
(Ⅱ)求函數(shù)f(x)的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知a>0,函數(shù)f(x)=ln(2-x)+ax.?

(1)設(shè)曲線y=f(x)在點(diǎn)(1,f(1))處的切線為l,若l與圓(x+1)2+y2=1相切,求a的值;?

(2)求函數(shù)f(x)的單調(diào)區(qū)間.

查看答案和解析>>

同步練習(xí)冊答案