【答案】
分析:(Ⅰ)只需證明當(dāng)a=2時(shí)f′(x)≥0恒成立即可;
(Ⅱ)當(dāng)x≥1時(shí),f(x)≥
恒成立,即(x-2)e
2x-a-x
2+3x-1≥0恒成立,設(shè)h(x)=(x-2)e
2x-a-x
2+3x-1(x≥1),從而轉(zhuǎn)化為h(x)
min≥0即可,利用導(dǎo)數(shù)可求得h(x)
min,注意對a進(jìn)行討論;
解答:解:(Ⅰ)當(dāng)a=2時(shí),f(x)=xe
-x+(x-2)e
x-2,f(x)的定義域?yàn)镽,
f′(x)=e
-x-xe
-x+e
x-2+(x-2)e
x-2=(x-1)(e
x-2-e
-x)=e
-x(x-1)(e
x-1-1)(e
x-1+1).
當(dāng)x≥1時(shí),x-1≥0,e
x-1-1≥0,所以f′(x)≥0,
當(dāng)x<1時(shí),x-1<0,e
x-1-1<0,所以f′(x)≥0,
所以對任意實(shí)數(shù)x,f′(x)≥0,
所以f(x)在R上是增函數(shù);
(II)當(dāng)x≥1時(shí),f(x)≥
恒成立,即(x-2)e
2x-a-x
2+3x-1≥0恒成立,
設(shè)h(x)=(x-2)e
2x-a-x
2+3x-1(x≥1),則h′(x)=(2x-3)(e
2x-a-1),
令h′(x)=(2x-3)(e
2x-a-1)=0,解得
,
,
(1)當(dāng)1<
<
,即2<a<3時(shí),
x | (1,) | | (,) | | (,+∞) |
h′(x) | + | | - | | + |
h(x) | 單調(diào)遞增 | 極大值 | 單調(diào)遞減 | 極小值 | 單調(diào)遞增 |
所以要使結(jié)論成立,則h(1)=-e
2-a+1≥0,h(
)=-
e
3-a+
≥0,即e
2-a≤1,e
3-a≤
,
解得a≥2,a≥3-ln
,所以3-ln
≤a<3;
(2)當(dāng)
=
,即a=3時(shí),h′(x)≥0恒成立,所以h(x)是增函數(shù),又h(1)=-e
-1+1>0,
故結(jié)論成立;
(3)當(dāng)
,即a>3時(shí),
x | (1,) | | (,) | | (,+∞) |
h′(x) | + | | - | | + |
h(x) | 單調(diào)遞增 | 極大值 | 單調(diào)遞減 | 極小值 | 單調(diào)遞增 |
所以要使結(jié)論成立,
則h(1)=-e
2-a+1≥0,h(
)=-
+2a-3≥0,即e
2-a≤1,a
2-8a+12≤0,
解得a≥2,2≤a≤6,所以3<a≤6;
綜上所述,若a>2,當(dāng)x≥1時(shí),f(x)≥
恒成立,實(shí)數(shù)a的取值范圍是3-ln
≤a≤6. …(12分)
點(diǎn)評:本題考查利用導(dǎo)數(shù)研究函數(shù)單調(diào)性、求函數(shù)最值問題,考查不等式恒成立問題,考查學(xué)生分類討論思想.