由曲線 y=sinx,y=cosx 與直線 x=0,x=數(shù)學公式所圍成的平面圖形(圖中的陰影部分)的面積是


  1. A.
    1
  2. B.
    數(shù)學公式
  3. C.
    數(shù)學公式
  4. D.
    2數(shù)學公式
D
分析:先將圍成的平面圖形的面積用定積分表示出來,然后運用微積分基本定理計算定積分即可.
解答:曲線 y=sin x,y=cos x 的一個交點的橫坐標為:,
由曲線 y=sin x,y=cos x 與直線 x=0,x=所圍成的平面圖形(圖 中的陰影部分)的面積是
s=∫(cosx-sinx)dx+∫(sinx-cosx)dx
=(sinx+cosx)|+(-cosx-sinx)|
=-1+-1
=2
故選D.
點評:本題主要考查了定積分在求面積中的應(yīng)用,運用微積分基本定理計算定積分的關(guān)鍵是找到被積函數(shù)的原函數(shù),屬于基礎(chǔ)題.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

由曲線y=sinx,y=cosx與直線x=0,x=
π2
圍成區(qū)域的面積為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(1)在同一平面直角坐標系中,經(jīng)過伸縮變換φ:
x′=3x
y′=y
后,曲線C變?yōu)榍x′2-9y′2=9,求曲線C的方程.
(2)闡述由曲線y=sinx得到曲線y=3sin2x的變化過程,并求出坐標伸縮變換.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,由曲線y=sinx,直線x=
32
π與x軸圍成的陰影部分的面積是
3
3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在利用隨機模擬求圖(其中矩形OABC的長為π,寬為2)中陰影(由曲線y=sinx(0≤x≤π)與x軸圍成)面積的過程中,隨機產(chǎn)生N1組隨機數(shù)據(jù)(xi,yi),(i=1,2,3∧N1),其對應(yīng)的點都落在矩形OABC區(qū)域內(nèi),其中有N2個點落在陰影區(qū)域內(nèi),現(xiàn)已知N1=10,據(jù)此估計N2的值為(  )說明:[x]表示實數(shù)x的整數(shù)部分.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

由曲線y=sinx,y=
2
π
x圍成的封閉圖形面積為(  )
A、1-
π
4
B、2-
π
2
C、
π
2
D、2+
π
2

查看答案和解析>>

同步練習冊答案