已知兩個(gè)點(diǎn)M(-5,0)和N(5,0),若直線上存在點(diǎn)P,使|PM|-|PN|=6,則稱該直線為“B型直線”給出下列直線①y=x+1;②y=2;③y=x;④y=2x+1;其中為“B型直線”的是( )
A.①③
B.①②
C.③④
D.①④
【答案】分析:首先根據(jù)題意,結(jié)合雙曲線的定義,可得滿足|PM|-|PN|=6的點(diǎn)的軌跡是以M、N為焦點(diǎn)的雙曲線的右支;進(jìn)而可得其方程,若該直線為“B型直線”,則這條直線必與雙曲線的右支相交,依次分析4條直線與雙曲線的右支是否相交,可得答案.
解答:解:根據(jù)題意,滿足|PM|-|PN|=6的點(diǎn)的軌跡是以M、N為焦點(diǎn)的雙曲線的右支;
則其中焦點(diǎn)坐標(biāo)為M(--5,0)和N(5,0),即c=5,a=3,
可得b=4;
故雙曲線的方程為=1,(x>0)
依題意,若該直線為“B型直線”,則這條直線必與雙曲線的右支相交,
進(jìn)而分析可得:①y=x+1,②y=2與其相交,
③y=x;④y=2x+1與雙曲線的右支沒有交點(diǎn);
故選B.
點(diǎn)評(píng):本題考查雙曲線與直線的位置關(guān)系,要掌握判斷雙曲線與直線相交,交點(diǎn)位置的判定方法.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知兩個(gè)點(diǎn)M(-5,0)和N(5,0),若直線上存在點(diǎn)P,使|PM|-|PN|=6,則稱該直線為“B型直線”,給出下列直線:①y=x+1;②y=
43
x
;③y=2;④y=2x+1.其中為“B型直線”的是
 
.(填上所有正確結(jié)論的序號(hào))

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知兩個(gè)點(diǎn)M(-5,0)和N(5,0),若直線上存在點(diǎn)P,使|PM|-|PN|=6,則稱該直線為“B型直線”,給出下列直線是“B型直線”的是( 。
A、y=x+1
B、y=
4
3
x
C、y=-
4
3
x
D、y=2x+1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知兩個(gè)點(diǎn)M(-5,0)和N(5,0),若直線上存在點(diǎn)P,使|PM|-|PN|=6,則稱該直線為“B型直線”給出下列直線①y=x+1;②y=2;③y=
4
3
x;④y=2x+1;其中為“B型直線”的是( 。
A、①③B、①②C、③④D、①④

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知兩個(gè)點(diǎn)M(-5,0),N(5,0),若直線上存在點(diǎn)P,使得|PM|-|PN|=6,則稱該直線為“hold直線”.給出下列直線:①y=
43
x,②y=2x+1,③y=x+1,則這三條直線中有( 。l“hold直線”.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2010-2011學(xué)年浙江省杭州市高三寒假作業(yè)數(shù)學(xué)卷三 題型:選擇題

已知兩個(gè)點(diǎn)M(-5,0)和N(5,0),若直線上存在點(diǎn)P,使|PM|-|PN|=6,則稱該直線為“B型直線”.給出下列直線①;②;③;④.其中為“B型直線”的是                                                (    )

A.①③               B.①②              C.③④              D.①④

 

查看答案和解析>>

同步練習(xí)冊(cè)答案