在三棱錐S-ABC中,△ABC是邊長為4的正三角形,平面SAC⊥平面ABC,SA=SC=,M、N分別為AB、SB的中點.
(Ⅰ)證明:AC⊥SB;
(Ⅱ)求二面角N-CM-B的余弦值;
(Ⅲ)求三棱錐N-BCM的體積.

【答案】分析:(I)證明SO⊥BO,建立空間直角坐標(biāo)系,用坐標(biāo)表示向量,利用向量數(shù)量積公式,可得結(jié)論;
(II)求出平面的法向量,利用向量的夾角公式,即可得到結(jié)論;
(III)求出N到平面ABC的距離,即可求三棱錐N-BCM的體積.
解答:(Ⅰ)證明:取AC中點O,連結(jié)OS、OB.
∵SA=SC,AB=BC,
∴AC⊥SO且AC⊥BO.
∵平面SAC⊥平面ABC,平面SAC∩平面ABC=AC,
∴SO⊥面ABC,
∴SO⊥BO.
如圖所示建立空間直角坐標(biāo)系O-xyz.
則A,C(-2,0,0),,
,
,
∴AC⊥SB.(5分)
(Ⅱ)解:由(Ⅰ)得
設(shè)為平面CMN的一個法向量,則,所以可取為平面ABC的一個法向量,

∴二面角N-CM-B的余弦值為.     (9分)
(Ⅲ)解:由(Ⅰ)(Ⅱ)知,∴N到平面ABC的距離為,
而△CBM的面積為
∴三棱錐N-BCM的體積為.       (12分)
點評:本題考查面面角,考查三棱錐體積的計算,考查向量知識的運用,考查學(xué)生分析解決問題的能力,屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在三棱錐S-ABC中,側(cè)面SAB與側(cè)面SAC均為邊長為1的等邊三角形,∠BAC=90°,O為BC中點.
(Ⅰ)證明:SO⊥平面ABC;
(Ⅱ)證明:SA⊥BC;
(Ⅲ)求三棱錐S-ABC的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在三棱錐S-ABC中,側(cè)面SAB與側(cè)面SAC均為等邊三角形,∠BAC=90°,O為BC中點.
(Ⅰ)證明:SO⊥平面ABC;
(Ⅱ)求二面角A-SC-B的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在三棱錐S-ABC中,側(cè)面SAB⊥底面ABC,且∠ASB=∠ABC=90°,AS=SB=2,AC=2
3


(Ⅰ)求證SA⊥SC;
(Ⅱ)在平面幾何中,推導(dǎo)三角形內(nèi)切圓的半徑公式r=
2S
l
(其中l(wèi)是三角形的周長,S是三角形的面積),常用如下方法(如右圖):
①以內(nèi)切圓的圓心O為頂點,將三角形ABC分割成三個小三角形:△OAB,△OAC,△OB精英家教網(wǎng)C.
②設(shè)△ABC三邊長分別為a,b,c.由S△ABC=S△OBC+S△OAC+S△OAB
S=
1
2
ar+
1
2
br+
1
2
cr
=
1
2
lr
,則r=
2S
l

類比上述方法,請給出四面體內(nèi)切球半徑的計算公式(不要求說明類比過程),并利用該公式求出三棱錐S-ABC內(nèi)切球的半徑.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在三棱錐S-ABC中,SA=AB=BC=AC=
2
SB=
2
SC
,O為BC中點.
(1)求證:SO⊥平面ABC
(2)在線段AB上是否存在一點E,使二面角B-SC-E的平面角的余弦值為
15
5
?若存在,確定E點位置;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在三棱錐S-ABC中,側(cè)棱SC⊥平面SAB,SA⊥BC,側(cè)面△SAB,△SBC,△SAC的面積分別為1,
3
2
,3,則此三棱錐的外接球的表面積為(  )

查看答案和解析>>

同步練習(xí)冊答案