已知雙曲線
x2
a2
-
y2
9
=1的一個(gè)焦點(diǎn)與拋物線y2=20x的焦點(diǎn)重合,則該雙曲線的離心率為
 
考點(diǎn):雙曲線的簡(jiǎn)單性質(zhì)
專(zhuān)題:計(jì)算題,圓錐曲線的定義、性質(zhì)與方程
分析:先確定拋物線的焦點(diǎn)坐標(biāo),可得雙曲線的焦點(diǎn)坐標(biāo),從而可求雙曲線的離心率.
解答: 解:拋物線y2=20x的焦點(diǎn)坐標(biāo)為(5,0)
∵雙曲線
x2
a2
-
y2
9
=1的一個(gè)焦點(diǎn)與拋物線y2=20x的焦點(diǎn)重合,
∴a2+9=25,∴a=4
∴e=
c
a
=
5
4

故答案為:
5
4
點(diǎn)評(píng):本題考查拋物線的標(biāo)準(zhǔn)方程,考查拋物線與雙曲線的幾何性質(zhì),屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(1)計(jì)算:2log32-log3
32
9
+10g 
1
3
1
8
-5 log59
(2)解不等式:log2(2x+1)+2>log2(3-x)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知圓O以原點(diǎn)為圓心,且與圓C:x2+y2+6x-8y+21=0外切.
(1)求圓O的方程;
(2)求直線x+2y-3=0與圓O相交所截得的弦長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

解不等式
(1)
1
x-1
>1       
(2)ax2-(a+1)x+1<0(a>0)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知,命題p:“函數(shù)y=lg(x2+2ax+2-a)的值域?yàn)镽”,命題q:“?x∈[0,1],x2+2x+a≥0”
(1)若命題p是真命題,求實(shí)數(shù)a的取值范圍.
(2)若命題“p∨q”是真命題,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=x3-3ax2+2bx在x=1處有極小值-1,試求a,b的值,
(1)并求出f(x)的單調(diào)區(qū)間.
(2)在區(qū)間[-2,2]上的最大值與最小值
(3)若關(guān)于x的方程f(x)=a有3個(gè)不同實(shí)根,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若直線(2t-3)x+y+6=0不經(jīng)過(guò)第一象限,則t的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=
2x-1,(x≥3)
1-3x,(x<3)
,則f(f(-1))的值是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=lnx-f′(1)x2+3x-4,則f′(1)=
 

查看答案和解析>>

同步練習(xí)冊(cè)答案